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1. Introduction

Cells comprise fundamental, structural, functional, and biological
elements of living organisms and are capable of learning new
information through training.[1–3] Cells can acquire knowledge

from previous incidents and react accord-
ingly to a new situation, a critical survival
instinct which is a universal feature of all
organisms.[4–6] Cellular-like learning can
occur genomically (Figure 1a), where a gene
memorizes[7,8] and transmits the learnt
information to the future generation upon
cell divisions referred to as epigenetic
learning.[5,9,10] There are different types of
epigenetic cellular-like learning observed
wherein habituation and sensitization are
two elementary nonassociative learning
forms.[11,12] Epigenetic habituation learning
can be defined as a decrease in the magni-
tude of reaction to an iterative training
cycle that enables the organism to ignore
repetitive stimuli.[13] The epigenetic habitu-
ation occurs when the input to a gene
carries to output with a negative genomic
regulator which is marked as inhibitory
(Figure 1b). As a result, the output reduces

due to the memorization of inhibitory negative epigenetic mark-
ing upon recurring stimuli. In the case of sensitization (Figure 1c),
the behavioral output of a gene is the opposite of habituation that
indicates an increase in response with respect to the recurring
stimulus. When the inputs are given to the gene, the output
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Habituation and sensitization represent nonassociative learning mechanisms in
both non-neural and neural organisms. They are essential for a range of functions
from survival to adaptation in dynamic environments. Design of hardware for
neuroinspired computing strives to emulate such features driven by electric bias
and can also be incorporated into neural network algorithms. Herein, cellular-like
learning in oxygen-deficient NiOx devices is demonstrated. Both habituation
learning and sensitization response can be achieved in a single device by simply
controlling the magnitude of the electric field. Spontaneous memory relaxations
and dynamic redistribution of oxygen vacancies under electric bias enable such
learning behavior of NiOx under sequential training. These characteristics in
simple device arrays are implemented to learn alphabets as well as demonstrate
simulated algorithmic use cases in digit recognition. Transition metal oxides with
carefully prepared defect concentrations can be highly sensitive to electronic
structure perturbations under moderate electrical stimulus and serve as building
blocks for next-generation neuroinspired computing hardware.
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increases with repetitive input correspondingly. Emulation of
epigenetic behavior in synthetic matter is still in early stages
due to complex requirements of electrical stimulus-sensitive
history-dependent metastable states in the materials which can
respond, remember, and forget input signals.[14] In electronic devi-
ces, migration of charged defects such as oxygen vacancies can
help realize distinct resistance states corresponding to the learning
process. By manipulating their response to electrical stimulus, dif-
ferent forms of learning may be realized. This provides an analogy
to the processes mediated by biological matter in cells.

At the outset, it is important to note that nonassociative learn-
ing is distinct from commonly reported synaptic potentiation and

depression in artificial synapses (Figure S1, Supporting
Information). Potentiation and depression involves either posi-
tive or negative training electric pulses applied without regard
to the specific time interval.[15,16] On the other hand, habituation
and sensitization learning plasticity (Figure S1b,c, Supporting
Information) are studied under multiple electrical training
events including consideration of the relaxation time processes.
During the interval period in habituation and sensitization train-
ing, no external stimulus is applied and the system spontane-
ously begins to relax. Furthermore, nonassociative learning
expects increase or decrease of response with respect to the train-
ing number for identical stimulus, whereas potentiation and

Figure 1. Nonassociative learning in NiOx. a) Schematic of a gene (DNA). b) Habituation indicates a reduction in the response after repetitive exposure to
stimuli. c) Sensitization implies an increase in response with respect to the iterative stimulus. The positive/negative signs represent marked genes with
respect to inputs (training). d) Schematic of NiOx device architecture. The input training pulses were applied between the top (Pd) and bottom (Pt)
electrode which causes movement of oxygen vacancies depending on the amplitude of the pulses. (inset) Optical image of an array of NiOx test chip.
e–f ) Relative percentage change in resistance with respect to the training times when each training cycle was performed for 52 s with an interval of T¼ 8 s.
The pulse width was kept constant to 500ms with the amplitude of input pulses of E1¼ 5mV nm�1 for habituation (e) and 30mV nm�1 for sensitization
(f ). (inset) Triangular pulses used for measuring the change in resistance state. (bottom panels) Square-shaped training pulse series applied to the device
for the habituation and sensitization measurement.
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depression do not necessarily rely on such variation in response.
This necessitates the need for complex energy landscapes with
characteristic stimuli-sensitive timescales of relaxing to the
ground state. Emulating nonassociative learning has drawn sub-
stantial interest in brain-inspired computing and information
processing as it is a fundamental form of learning.[17]

Habituation and sensitization learning are present in various organ-
isms and is essential to enhance their survival.[18] Nonassociative
learning has been realized in traditional very-large-scale integration
technology using a large number of transistors (�20) as well as
other electronic components. These powerful circuits are capable
of image processing as well as image recognition with improved
efficiency and highly accurate feature extraction.[19–21] There is
interest in emulating such features in nonsilicon devices in the
emerging fields of neuromorphic computing.[22]

Mimicry of nonassociative learning using the single-resistive
two-terminal oxide-based solid-state device is promising to
reduce circuit-level complexity.[14,15] To date, environmental
habituation has been demonstrated by switching between differ-
ent gases (e.g., H2, O3, and Ar) at high temperatures in nickel-
based oxides.[23,24] However, an electric field-driven solid-state
device which can emulate nonassociative learning is still lacking.
Indeed, a large body of literature exists on potentiation and
depression[15,16] and forgetting behavior[25–29] using different
types of oxide memristors including NiO but their response
under sequential electrical training and relaxation sessions is
unknown.[16]

Here, we emulate nonassociative learning behavior using elec-
tric bias in solid-state devices from the oxygen-deficient binary
nickel oxide (henceforth referred to as NiOx wherein x< 1) at
room temperature. A typical schematic of the NiOx-based
solid-state device architecture is shown in Figure 1d and S2,
Supporting Information. Both habituation and sensitization
behavior are demonstrated in the same solid-state device simply
by controlling different amplitudes of training pulses that are
independent of repetition intervals of electrical stimulation.
We relate the temporal reduction of relative resistance modula-
tion to habituation which occurs due to dispersion of oxygen
vacancies near the electrode by the low amplitude of electric field
(E1¼ 5mV nm�1). A higher electric field (E1¼ 30mV nm�1)
reduces excess oxygen vacancies near the top electrode that
enhances the response of the resistance state corresponding to
sensitization. We then present a nonassociative learning model
related to habituation and sensitization based on comparator
theory.[30]

2. All Electric Nonassociative Learning in NiOx

The training of NiOx has been performed by applying a series of
input electrical pulses. During training, the pulse amplitude (E1)
was retained constant to 5mV nm�1 and width of 0.5 s for a rep-
etition interval (T ) of 8 s (Figure 1e and S3, Supporting
Information). The NiOx device shows a higher response to the
training cycle and demonstrates a change in relative resistance
of 7.6% after the first training cycle. The relative resistance
change reduces to 4.4% and 3.8% after the second and third
training cycles, respectively. The response of the NiOx device
gradually decreases with the repetition of training cycles,

indicating habituation to electric pulses. On the other hand,
the response of NiOx continuously increases when the training
pulses were applied with higher amplitude (E1) of 30mV nm�1

by keeping exactly identical pulse width and repetition interval as
used for the habituation experiment (Figure 1f and S3,
Supporting Information). The early response of the device was
found to be 13.6% (first training cycle) and then decreased
8% (second training cycle), indicating initial habituation; how-
ever, the response starts to increase after the second training
cycle consistent with response noted in biology during sensitiza-
tion measurements.[31] The response of the devices becomes
equivalent to the initial response (�13%) after eight training
cycles, a significant increase in the response to 19% when the
11th cycle of training pulses was applied to the devices. Such
increase in response with respect to the electrical training is a
measure of sensitization behavior similar to what is noted in
cellular organisms, shown in Figure 1c.

3. Statistics of Nonassociative Learning

The response of the NiOx device has been measured after the
complete withdrawal of electrical stimulus for prolonged time
(Figure 2a,b). The NiOx device demonstrates complete recovery
to its original resistive state and reproducibility of learning
characteristics as the successive electrical training results in
habituation and sensitization. The habituation experiment was
performed by applying training pulses with amplitude and
width of 5mV nm�1 and 0.5 s, respectively. The NiOx device con-
tinues to demonstrate habituation behavior with respect to the
training cycle even after 24 h of withdrawal of training
pulses in ambient (Figure 2a). A similar measurement was per-
formed for the sensitization experiments by applying a higher
amplitude of training pulses of 30mV nm�1 (Figure 2b).
Here, the number of pulses applied for the training is similar
to habituation cycles. The habituation and sensitization response
of the devices has been reproduced with the same magnitude
even after long rest time in air. Thus, nonassociative learning
occurs in the solid-state system even if the stimulus is
withdrawn for a prolonged time analogous to what is observed
in neuroscience studies.[30]

In order to investigate the dependency of nonassociative learn-
ing in the presence of electrical stimuli, a set of experiments has
been performed by varying the training interval (T ). The effect of
training interval (T ) on habituation and sensitization experi-
ments has been investigated by varying T from 6 to 52 s for a
constant training time (Figure S4, Supporting Information).
The device shows habituation and sensitization behavior irre-
spective of the repetition interval (Figure 2c,d). Further, the
dependency of learning behavior on the amplitude of training
pulses has been studied by varying amplitudes of training pulses
where pulse width and training intervals were set to 0.5 s and
T¼ 8 s, respectively (Figure S5, Supporting Information). The
device demonstrates habituation behavior for the pulse ampli-
tude (E1) varied from 5 to 15mV nm�1, whereas the sensitization
is observed at 25mV nm�1 and above (Figure 2e). A crossover
response is observed from the device for a pulse amplitude of
20mV nm�1, implying the learning behavior manifested by
the strength of electric pulses, where the lower amplitude of
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the pulses is responsible to create habituation and the higher
amplitude of pulses is capable of generating sensitization
behavior, indicating a controllable learning capability of NiOx

with respect to the selected electric field.

4. Electrothermal Physics Model for Habituation
and Sensitization

The nonassociative learning of NiOx devices has been investi-
gated qualitatively using a simple electrothermal physics model
based on the concentration of oxygen vacancies near the elec-
trode interface (Figure S6, Supporting Information). The model
represents the oxygen vacancy motion near the electrode which is
primarily responsible for nonassociative learning. The
as-prepared NiOx contains a large number of oxygen vacancies
(deposition conditions specifically chosen to create an oxygen-
deficient oxide) that forms conducting pathways.[32] Iterative
training cycle with lower amplitude leads to decrease in oxygen
concentration and accumulation of more oxygen vacancies near
the top electrode, hence lowering the resistive response, repre-
senting habituation. On the other hand, the higher amplitude
of electrical pulses is capable of dispersing the oxygen vacancies
near �10 nm of the top electrode, indicating disruptions of
conducting filaments, leading to a higher response to the relative
change in resistance, leading to sensitization behavior.

5. Cellular-like Learning Model

According to the stimulus model comparator theory,[29] when a
noxious stimulus is presented repeatedly, the organism gener-
ates a model for the incoming stimulus. With the further appear-
ance of a noxious stimulus, the strength of the experienced
stimulus will be compared and the response generated accord-
ingly. The experienced stimulus must be remembered for a short
period of time for comparison purposes, indicating a short-term
memory-like model as proposed in Figure 3a. This model
proposes, if there is no stimulus within a short period of time,
the previous memory will erase completely, and the organism
will respond as if it is a new stimulus. However, the memoriza-
tion level increases with respect to the strength of the stimulus,
indicating higher chance of survival even in an unpleasant envi-
ronment. Here, two types of stimulus have been used for retrain-
ing, where a weak stimulus causes habituation and strong
stimulus leads to sensitization.

To benchmark against the comparator model, the adaptive for-
getting mechanism (i.e., retention behavior) of NiOx has been
investigated under different stimulus strengths (Figure 3b). A
decay relaxation time has been extracted for different pulse
amplitudes (inset of Figure 3b). It has been observed that the
relaxation time enhances for increased pulse amplitude.
Moreover, the forgetting behavior has been studied by applying
repetitive electric pulses (50 training pulses) on the devices
(Figure 3c), demonstrating 10X longer time memory retention

Figure 2. Training interval and bias amplitude-dependent habituation and sensitization. a,b) Habituation and sensitization measurement was executed
by following the resting time of 24 h and applying training electric field of 5 and 30mV nm�1, respectively. The NiOx device returns to the original resistive
response after long rest period in normal laboratory environment. c) Training interval (T ) dependence of the NiOx device with a constant pulse amplitude
E1¼ 5mV nm�1. The arrow indicates habituation in an electric field even after training interval T of 52 s, which is equal to the training time.
d) Sensitization of NiOx with E1¼ 30mV nm�1 for different training intervals. The increased response is independent of the training interval.
e) Amplitude of training pulse (E1) dependence of NiOx with a constant training interval T¼ 8 s. The critical electric field between habituation and
sensitization is about 20mV nm�1. (Inset) Movement of oxygen vacancies at different training pulses.
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compared with a single training pulse (inset of Figure 3c). This
result is quite consistent with the forgetting behavior proposed
by Ebbinghaus,[33] suggesting requirements of retraining.

To examine the device-to-device reproducibility of the resistive
switching window, we fabricated 65 devices on a chip and
measured the switching properties follow by space-charge-
limited conduction mechanism analysis (Figure 3d and S7,
Supporting Information). The histogram of the switching
window demonstrates a higher resistive state concentrated at
4.86 kΩ, where 90% of the device lies within the switching win-
dow of 4.86 kΩ� 45Ω, for the switching pulse of þ30mV nm�1

with a pulse width 0.5 s. The devices also exhibit a lower resistive
state, statistically concentrated at 4.35 kΩ with a variation of
�58Ω, while a switching pulse of �30mV nm�1 was applied
to the devices with similar pulse width. The device-to-device var-
iation of the switching state (ΔΩ/Ωmean) is found to be less than
2%, indicating scalability of the devices. In addition, every device
shows a wide memory window with respect to the pulse width
and demonstrates potentiation and depression (Figure S8,
Supporting Information).

6. Elementary Mechanisms Leading to Learning
in NiOx

Various types of resistive memory behaviors have been observed
in NiOx ranging from bistable memory switching, monostable
threshold switching, to nonassociative learning reported in this
work (Table S1, Supporting Information, compiles an exhaustive
list of switching studies on NiO). Essentially, the stoichiometry of

Ni:O in the compound determined by oxygen partial pressure
during synthesis greatly influences the resulting behavior under
electric fields (Table S2, Supporting Information), for example,
threshold switching behavior was observed in oxygen-rich and
near-stoichiometric samples.[34] On the contrary, in this work,
the NiOx samples showing nonassociative learning behavior
were grown in an oxygen-starved environment (Figure S9,
Supporting Information). In order to study the role of oxygen
vacancies in realizing the learning behavior, the as-prepared
NiOx samples were annealed at different temperatures up to
450 °C in air. After annealing at different temperatures up
to 450 °C, the resistivity of the films increases from 106 to
108Ω cm (Figure 4a), indicating the annihilation of oxygen
vacancies during postannealing. The reduction in oxygen
vacancy concentration upon air annealing was further investi-
gated using the combination of synchrotron spectroscopy and
first-principle modeling as discussed next. NiOx devices fabri-
cated from as-grown samples demonstrate stable switching
under an electric field (E1) of �30mV nm�1/0.5 s, as shown
in Figure 4b and S10, Supporting Information. Moreover, the
as-prepared device shows a continuous update of current when
multiple current–voltage sweeps were performed continuously
(Figure S11, Supporting Information). After annealing at
450 °C for 1 h in air, the NiOx device does not display any switch-
ing behavior even under higher electric field (Figure 4b).[35,36]

Analysis of the carrier density from midinfrared scattering-type
scanning near-field optical microscopy (s-SNOM) is presented in
Figure 4c, which indicates a greater free carrier density in
as-grown samples (see Experimental Section for details).
The resistance switching characteristics are found only in

Figure 3. Habituation and sensitization model based on “stimulus model comparator theory.[30]” a) A proposed model on habituation and sensitization
based on retraining using weak and strong stimulus (inputs), respectively. b,c) The resistance decay behavior of NiOx has been compared with the decay
time constant (τ), extracted from the decay curve by fitting the exponential relation, ΔRðtÞ=ΔRo ¼ exp½1� ðt=τÞβ�, where, ΔRðtÞ ¼ RðtÞ � Rpristine and
ΔRo ¼ Ro � Rpristine in which R (t) is the resistance at any specific time t and Ro is the resistance measured immediately after applying b) single and c) 50
training pulses and index β ranging from 0 to 1. (insets) τ representing relaxation time constant with respect to the amplitude of training pulses.
d) A statistical distribution of memory window was collected from 65 devices measured immediately after applying the pulses of�30mV nm�1 for 500ms.
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oxygen-deficient films. The defect states in NiOx film can be fur-
ther characterized by X-ray photoelectron spectroscopy (XPS) by
measurement of O 1s peak and Ni 2p peaks (Figure S12,
Supporting Information). As Figure 4d shows, the O1s XPS peak
is split into oxygen vacancies (OV) and lattice oxygen (OL) and
hydroxide (OH).[37,38] A noticeable reduction in OV peak for
the air-annealed NiOx device indicates an approach toward stoi-
chiometric composition (NiO0.97 after annealing at 450 °C)[39]

(Figure 4e). On the other hand, the as-prepared NiOx film
contains higher concentration of oxygen vacancies (NiO0.85)
(Figure S13, Supporting Information). Similar trends are
observed by Raman spectroscopy (Figure S14, Supporting
Information).

The films were further characterized using synchrotron X-ray
diffraction, as shown in Figure 4f. A shift of NiOx (111) diffrac-
tion peak to higher Q (¼2π/d) value after annealing at 450 °C

Figure 4. Mechanisms enabling cellular-like learning in oxygen-deficient NiOx. a) Electrical resistivity with visual color change in NiOx films after annealing
at different temperature (Figure S2, Supporting Information). b) (bottom) Optimal resistive switching state in the as-prepared (AP) NiOx is essential for
cellular-like learning. The resistance increases from 4.7 kΩ (pristine) to 5.2 kΩ for application pulse width of þ30mV nm�1/0.5 s and decreases to 4 kΩ
owing to the application of �30mV nm�1/0.5 s. The simulated curve follows the trends of switching characteristics. (Top) After the heat treatment at
450 °C/1 h, the device does not display any switching behavior due to the annihilation of oxygen vacancies. c) s-SNOM second-harmonic amplitude
images taken at laser wavelength of λ¼ 10.5 μm of NiOx samples prepared in 2% oxygen environment and annealed at different temperatures (as
prepared, 350 °C, 400 °C, and 450 °C). d) Oxygen peaks in core level measured by XPS for as-prepared to 450 °C-annealed NiOx films, respectively.
The oxygen peaks fit by three distinct components corresponding to lattice oxygen (OL) are cyan, oxygen vacancies (OV) violet, and hydroxide
(OOH) yellow. e) Stoichiometry of NiOx, where x denotes the ratio of oxygen to nickel. f ) Synchrotron X-ray diffraction of NiOx (111) peaks after annealing.
Lattice constant expansion of �0.19% is observed for AP NiOx over 450 °C NiOx film. g) Ex situ XANES-measured spectrum for AP NiOx and after
annealing. The weight of the O K-edge peaks reduces (arrow direction) for AP NiOx, indicating a decrease of unoccupied state in O 2p orbital with
higher oxygen vacancies. (inset) Zoomed peak intensity variation. h) Normalized Ni K-edge XANES spectra of AP NiOx and 450 °C NiOx with pre-edge
features in zoomed view (inset).
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corresponds to a decrease in the lattice constant (d) by 0.19%. The
as-prepared (AP) NiOx sample has larger concentration of oxygen
vacancies, which results in lattice expansion. Additional X-ray
absorption spectroscopy (XAS) measurements have been
performed to investigate oxygen vacancies in AP-NiOx

(Figure 4g). The lower weight of O-K-edge for AP-NiOx demon-
strates less unoccupied states of O 2p orbitals accompanied with

the oxygen deficiency and is consistent with first-principles cal-
culations (Figure S15, Supporting Information). After annealing,
the as-prepared NiOx becomes more stochiometric as the spec-
trum weight of the 450 °C-annealed NiOx shifts to lower energy
in Ni L-edge (Figure S16, Supporting Information). The X-ray
absorption near-edge structure (XANES) spectra of Ni-K-edge
demonstrate a feature of Ni0 and Ni2þ, which indicates the

Figure 5. Proof-of-concept learning with NiOx device arrays and implementation of homeostatic regulation. a) The light intensity of letter “P” has been
controlled by 6� 8 of NiOx devices corresponding to change in resistance with respect to the training cycle. b) The training has been performed by
applying 50 training pulses amplitude E1¼ 5mV nm�1 and width 500ms (Video S1, Supporting Information). The delay between training pulses was kept
constant to 8 s. c) A systematic change in light intensity is recorded with respect to time demonstrating the occurrence of habituation. The intensity was
scaled with respect to the first training cycle. d) Sensitization measurement has been performed by applying a similar number of training pulses of
amplitude E1¼ 30mV nm�1 and width 500ms. The intensity of “P” increases due to the continuous training process after the initial decrease of intensity
(Video S2, Supporting Information). Here, the intensity is scaled into tenth training pulse. e) Systematic change in intensity at different training cycles has
been recorded. (insets) Change in resistance for X–Y after every training cycle for habituation and sensitization respectively. f ) Effect of neuronal adaptive
decay realizing homeostasis on a toy network. Without adaptively changing the decay rate (no homeostasis), only a few neurons fire and dominate. In
contrast, adaptive decay functionality in the neuronal devices provides an alternate pathway to enable homeostasis in the network, thereby allowing all
neurons to competitively learn. g) The network architecture consisting of an input layer of size equal to the dimensionality of the MNIST training images,
an excitatory layer of 225 LIF neurons with adaptive decay, and an inhibitory neuron layer for implementing lateral inhibition. h) The final weight patterns
after training over the 60 000 training images. The network achieves an accuracy of 84.8% over the test set of 10 000 images.
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appearance of oxygen vacancies in the system[40] (Figure 4h).
After annealing at 450 °C, the Ni0 feature becomes suppressed
corresponding to the annihilation of oxygen vacancies during
annealing (inset of Figure 4h).

7. Proof-of-Concept Application of Nonassociative
Learning in a Device Array

To illustrate nonassociative learning behavior, habituation and
sensitization experiments have been carried out on a 6� 8 array
grid, as shown in Figure 5. The NiOx device array attempts to
learn an alphabet “P” in the presence of an electric field, where
the intensity of light-emitting diode (LED) bulb is a measure of
learning (Figure 5a). The habituation measurement has been
performed by applying 50 training pulses with an amplitude
of 5 mV nm�1 for 0.5 s in each training cycle. Every training cycle
was performed at an interval of 8 s (Figure 5b and Movie S1,
Supporting Information). After the first training cycle, the array
of NiOx devices learnt to program “P” with the highest intensity
of LEDs. Further decrease in learning intensity to 20% is
observed after the second training cycle. The change in intensity
with respect to the training cycle is summarized in Figure 5c. A
dramatic reduction in intensity close to zero is found after the
tenth training cycle, indicating habituation. In contrast, a higher
amplitude of electric field (E1¼ 30mV nm�1) causes enhance-
ment in intensity even after using the constant value of other
parameters that have been used for habituation measurement
(Figure 5d). The enhancement in the intensity of LED array with
respect to the training cycle of NiOx is analogous to the level of
sensitization noted in biological organisms (Figure 5e and Movie
S2, Supporting Information).

8. Proof-of-Concept Application of Nonassociative
Learning in Spiking Neural Network (SNN)

In neuroinspired systems, AI models have looked at learning
from various levels of abstraction—focusing either on modeling
the synaptic phenomenon of short-term plasticity[24,41] or on
modulating the excitability of neuronal dynamics.[42] Here, we
focus on the neuron activity modulation scenario and showcase
that the cellular-like learning in NiOx can be used to implement
homeostatic regulation in neurons,[43] essential for stability while
learning. Homeostasis ensures a neuron, that has fired before,
finds it harder to fire in the future (requires a greater input than
previously). Similar to habituation, this ensures that a target level
of activity is maintained in the network, with no single neuron
dominating the firing pattern (Figure 5f ). Implementation of
temporal spiking neuron dynamics like the leaky–integrate–fire
(LIF) model[44] augmented with homeostasis effects involves sig-
nificant hardware overhead in complementary metal–oxide–
semiconductor (CMOS) implementations. For instance, analog
CMOS designs with transistors in subthreshold saturation
regime involve complex feedback circuitry to implement homeo-
stasis and consist of more than 20 transistors.[45,46] In contrast,
NiOx devices can be used to mimic the leaky–integrate dynamics
of the membrane potential with homeostasis at a one-to-one level
through its intrinsic physics by leveraging its decay time

modulation property as a function of the operating electric field
(Figure S17, Supporting Information). Using the device dynam-
ics, we demonstrate this capability in a system-level application
with a large-scale network simulation for learning handwritten
digits from the MNIST dataset.[47] Our network (Figure 5g) with
225 neurons attained an accuracy of 84.8% on the MNIST test
set—on par with networks of similar size.[48–50] The network with
the adaptive decay scheme was able to implement homeostasis—
inducing competition with no single neuron dominating
(Figure 5h).

9. Conclusion

Oxygen-deficient NiOx shows resistance switching under electric
bias and spontaneous relaxation of memory. This combination of
material properties enables demonstration of all-electric
nonassociative learning: simple control of electric field shows
switching between habituation and sensitization modes in a
single device. Mott materials sensitive to electrical excitations
can serve as building blocks to explore features of evolutionary
biology for implementation in machine intelligence.

10. Experimental Section

Synthesis of NiOx Films: The NiOx film was grown from a pure Ni target,
using magnetron sputtering with a power of 100W, where the applied volt-
age and current were controlled to 350 V and 300mA (direct current),
respectively. The NiOx film was grown at a pressure of 5 mTorr with flow
of 1 sccm O2 (2%) and 49 sccm (98%) Ar gas mixture. The film was grown
at a temperature of 300 °C with a rate of �3 nmmin�1. To achieve a uni-
form film, the substrate rotated with a speed of 20 rpm during deposition.
To compare with devices made from the pristine NiOx film, we further
annealed the NiOx films at elevated temperatures (i.e. 350 °C, 400 °C,
and 450 °C, respectively) for 1 hr in air.

Device Fabrication: A schematic of a typical two-terminal metal–oxide–
metal (MOM) cellular-like device architecture is depicted in Figure 1d.
NiOx was deposited by a completely inorganic, carbon-free, magnetron
sputtering method on Ti/Pt (10/70 nm)-coated silicon substrate (p-Si,
100). At first, the silicon substrates were cleaned with a triple-cleaning
method using toluene, acetone, and isopropanol by sonicating for
5 min each and dry blown with N2 gas. The silicon wafer was heated to
200 °C to remove the moisture from the surface before depositing the
Ti/Pt metal. The bottom metal contact (Ti/Pt) was grown by e-beam evap-
oration. Then the wafer was transferred into the deposition chamber to
grow 96 nm NiOx film. After the growth of the NiOx film, the substrate
was transferred to another sputtering chamber with a circular shadow
mask to deposit the top metal electrode. A 200 nm palladium (Pd) top
electrode was deposited by sputtering at 10�3 mbar pressure. All
cellular-like devices were stored in ambient environments.

In Situ Electrical Measurements: The electrical characterization of the
solid-state NiOx devices was performed by constantly measuring the
current–voltage (I–V ) curves by sweeping the gate voltage from �10 to
10mV with a step of 5 mV using the Keithley 2635 A source meter. The
measurements were performed in a closed shield probe station to avoid
electrical noise from the surroundings. The habituation and sensitization
training in the array of devices were performed by applying square pulses
to the devices connecting them in parallel to the Keithley 2635 A source
meter. The resistance measurement was accomplished using LabVIEW
programming and connecting to the 6� 8 LED bulbs.

X-ray Absorption Spectroscopy: Absorption spectroscopy at the O K-edge
and Ni L-edge of NiOx thin films was performed at beamline 29-ID-D at the
Advanced Photon Source, Argonne National Laboratory. Data were col-
lected simultaneously in total electron yield (TEY) and total fluorescence
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yield (TFY) at room temperature in a pressure better than 5� 10�8 Torr.
TFY signal was collected using a microchannel plate located at 54° with 7°
angular acceptance. The incidence angle was set to 30°. Circular-polarized
X-ray with an overall energy resolution better than 100meV was used.
Using the drain current from a gold mesh upstream of the sample, both
absorption signals were normalized by the incident X-ray intensity. The
XANES spectra at the absorption K-edge of Ni of the NiOx thin films were
taken under ambient temperature and pressure at the beamline 33-ID-D of
Advanced Photon Source at Argonne National Laboratory. The acquired
XANES data were processed according to standard procedures using
the ATHENA software.

X-ray Photoelectron Spectroscopy: Photoelectron spectroscopy at the
O-1s and Ni-2p core levels of NiOx thin films was performed in Kratos
AXIS ULTRA with a DLD detector at the Birck Nanotechnology Centre,
Purdue University, USA. The sample was slightly heated around 50 °C
during the time of measurement. The measurement was performed in
an ultrahigh vacuum condition. The XPS measurements were conducted
with Al Kα radiation (1486.6 eV). All XPS spectra were standardized with
respect to carbon 1s peak (284 eV). The data were extracted and processed
using CasaXPS software (http://www.casaxps.com/).

Midinfrared Near-Field Microscopy: Midinfrared s-SNOMwas performed
using a commercial setup (neaspec-GMBH) which was based on a
tapping-mode atomic force microscopy with a cantilevered metal-coated
tip of apex radius of �30 nm, oscillation frequency of Ω� 280 kHz, and a
tapping amplitude of �100 nm. A monochromatic quantum cascade laser
beam at λ¼ 10.5 μm was focused at the tip by a parabolic mirror at angle
of 45° to the sample surface. The detection method was based on phase
modulation (pseudoheterodyne) interferometry and enabled detection of
the backscattered light demodulated at higher harmonics of tip
resonance frequency.[51,52]

Carrier Concentration Calculation fromMidinfrared Near-Field Microscopy:
To theoretically estimate the carrier concentration for each NiOx sample in
Figure 5c, we used the extended finite dipole model for layered
systems[53–56] assuming a Drude-type dielectric function for NiOx. The
model describes the tip by a metallic ellipsoid which was illuminated at
45° relative to tip apex. The tip-scattered field was given by
Es ¼ seðiφÞ ∝ ð1þ rpÞ2αeffEinc, where rp is the far-field Fresnel reflection
coefficient of the sample, Einc the incident electric field, and αeff the
effective polarizability of the tip.[57,58] The free carrier densities n are
included in rp via the dielectric function of the NiOx sample given by

εNIOðωÞ ¼ ε∞ � ω2
p

ω2þiω=τ, where ε∞ is the high-frequency dielectric function,

ωp ¼
ffiffiffiffiffiffiffiffi
ne2
m�ε0

q
is plasma frequency, τ ¼ σ0m�

ne2 is electron scattering time, m�

the effective mass, and σ0 the conductivity.[59,60]

To estimate the carrier density (n), we fit the normalized experimental
data point found by taking the ratio of signal value on NiOx to signal value
on Pd, (s2(NiOx)/s2(Pd)) with the calculated normalized near-field
amplitude (s2(NiOx)/s2(Pd)), using the extended finite dipole model,
and estimated the carrier densities n for each NiOx sample in
Figure 5c. This procedure gave n¼ 1.96� 1018 cm�3 (as-prepared
NiOx), n¼ 1.93� 1018 cm�3 (annealed at 350 °C), n¼ 1.9� 1018 cm�3

(annealed at 400 °C), and n¼ 1.87� 1018 cm�3 (annealed at 450 °C).
This first-order estimate showed an expected trend, where the carrier
concentration increases with increasing conductivity, NiOx (annealed at
450 °C) has the smallest carrier density, and NiOx (as prepared) shows
the largest density.

First-Principles Electronic Structure Calculation of NiOx for XANES
Spectroscopy: Density functional theory (DFT) calculations[61,62] of NiOx

systems were performed using the Vienna ab initio Simulation Package
(VASP)[63–65] with projector-augmented wave (PAW)[66] approach. The
exchange-correlation functional used was the Perdew–Berke–Ernzerhof
(PBE)[67]–generalize gradient approximation (GGA).[68,69] To model the
strongly correlated Ni 3d states, Hubbard U[70] of 7.05 eV was used for
Ni.[71] All calculations were performed using the Gaussian-smearing algo-
rithm with the cutoff energy for the planewave basis set as 520 eV.
Γ-centered k-point grids of 30 Å were used. All calculations were spin
polarized, and their energy and atomic forces were converged to within

10�4 eV and 0.02 eV Å�1, respectively. The O K-edge XANES spectra were
computed using the FEFF9 package,[72] which implemented Green’s
formulation of the multiple scattering theory.

The initial NiOx crystal structure with space group Fm̄3m (mp-19 009)
was taken from Materials Project.[73] A 2� 2� 2 supercell of NiOx (32
atoms) was used to accommodate the symmetry of the antiferromagnetic
ordering. Oxygen-deficient NiOx was modeled by removing on O atom
from the fully relaxed NiOx supercell. The O K-edge XANES calculations
were performed on all symmetrically distinct O sites in stoichiometric and
oxygen-deficient NiOx. For oxygen-deficient NiOx, only O atoms less than
5 Å away from the oxygen vacancy defect were calculated as the XANES
resembled that of stoichiometric NiOx beyond 5 Å. The calculated site-wise
XANES spectra were averaged to give the structure-wise spectra.

Simulation of Oxygen Migration during Training: The resistance of the
NiOx device was modulated by the concentration of oxygen at the interface
at the top electrode. The resistivity of the channel was defined[74] as

ρ ¼ ρ0e
n�n0
nd (1)

where n is the concentration of mobile oxygen atom and ρ0, n0, and nd are
fitting parameters. The resistance of the device is defined as

R ¼
Z

x2

x1
ρðxÞ � R0 (2)

where R0 is an extra-fitting parameter that is used to simplify the fitting pro-
cess, x1 is the x-axis of the top electrode, and x2 is the x-axis value at end of
the interface region. The oxygen atoms’ motion induced by the external
potential was formulated by the drift-diffusion equation as follows.

∂n
∂t

¼ ∇:ðD∇n� vnÞ þ G (3)

where D is the diffusion coefficient, and v is the drift velocity that is defined
as

v ¼ v0e
� Ea

kBTsinh
qaE
mkBT

� �
(4)

where E is the electric field, q is the electron charge, a is the hopping
distance, m is fitting parameter, kB is the Boltzmann’s constant, T is the
temperature, v0 is a fitting parameter, G is the generation term, and Ea
is the diffusion barrier. The generation term G is added for
sensitization defined as

G ¼ AGe
�ðEa�qβEÞ

kBT (5)

where AG is the fitting parameter and β is the mesh size. The electric poten-
tial and the electric field were calculated by solving the current
continuity equation.

∇:
1
ρ
∇Ψ ¼ 0 (6)

The differential Equation (1)–(6) is solved self-consistently[75] using the
parameters’ different values of the parameter (Figure S6, Supporting
Information).

Simulation Methodology for Spiking Neural Network (SNN): The spiking
neural network (SNN) was implemented using the PyTorch-based
BindsNET,[49] an open-source library for designing biologically inspired
algorithms. The network topology was the same as used in the study
by Diehl et al.[48] with 225 neurons in the excitatory layer. The inputs were
presented to the network as Poisson-encoded spikes, where the probability
of spiking at any time step was proportional to the input pixel’s value. A
Poisson firing rate of 128 Hz was used. Each input image in the training set
of 60 000 of the MNIST handwritten dataset[47] was presented for 100ms.
LIF neurons were used with the adaptive decay of the membrane potential
modeled using the device characteristics. The decay rate was decreased by
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increasing the operating electric field of the device. Note that while this
might impact the integration level of the neuron device, we considered
that this could be offset by pulse width modulation of the input pulses
to the neuron. Further device characterization studies had to be performed
to validate this effect from a system formulation viewpoint. After each
spike, the neuron was inhibited from firing again for a fixed refractory
period, discarding any inputs that arrived meanwhile. The synaptic weights
between the input and the excitatory layer are updated according to the
standard spike-timing dependent plasticity (STDP) rule[76] of

Δw ¼

8>><
>>:

Aþ exp
�Δt
τ

� �
Δt > 0

�A� exp
Δt
τ

� �
Δt < 0

(7)

where Δt is timing difference between pre- and postspikes, Aþ and A� are
the pre- and postsynaptic learning rates, and τ is the time constant of the
STDP dynamics. The other connections between the layers (wexc�inh,
winh�exc) were kept fixed. The inhibitory layer was connected to the excit-
atory layer in a one-to-one manner and implemented the functionality of
lateral inhibition. This ensured that different neurons learn different input
patterns. Finally, we normalized the weights such that the neurons in the
network were equally used.[77] We trained the network over the entire
dataset for three epochs with a batch size of eight. Neurons were assigned
classes based on their highest spiking rate. The network parameters used
for training are listed in Table 1.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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