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ABSTRACT
Electrocatalysis provides a potential solution to NO3

− pollution in wastewater by converting it to innocuous N2 gas. However, materials
with excellent catalytic activity are typically limited to expensive precious metals, hindering their commercial viability. In response to this
challenge, we have conducted the most extensive computational search to date for electrocatalysts that can facilitate NO3

− reduction reaction,
starting with 59 390 candidate bimetallic alloys from the Materials Project and Automatic-Flow databases. Using a joint machine learning-
and computation-based screening strategy, we evaluated our candidates based on corrosion resistance, catalytic activity, N2 selectivity, cost,
and the ability to synthesize. We found that only 20 materials will satisfy all criteria in our screening strategy, all of which contain varying
amounts of Cu. Our proposed list of candidates is consistent with previous materials investigated in the literature, with the exception of
Cu–Co and Cu–Ag based compounds that merit further investigation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0092948

I. INTRODUCTION

The production of ammonia in large-scale agricultural pro-
cesses came with the unforeseen consequences of an excess of nitrate
(NO3

−) by-products.1–3 This results in NO3
− runoff being one of

the leading sources of surface and groundwater pollution. When
left untreated, NO3

− pollution can lead to significant damage to
the surrounding ecosystem via eutrophication and have dire conse-
quences for human health, such as methemoglobinemia in infants.4
The removal of anthropogenic NO3

− pollutants is essential to clos-
ing the nitrogen cycle in order to avoid further damage to human
health and the environment.

Several methods exist to either remove NO3
−, such as reverse

osmosis,5 oxo-anion adsorption,6 and ion exchange,7 or transform
it into more benign by-products via chemical NO3

− reduction8–10

and biological degradation.11–13 Although these technologies can be
highly effective, with NO3

− removal rates of up to 90%, each car-
ries notable drawbacks. For example, chemical treatments require

constant replenishment of reactants, such as aluminum or hydrogen,
and reverse osmosis has high capital and operation costs (espe-
cially if NO3

− is the only pollutant of concern), and biological
degradation processes may not perform well in colder climates and
produce biological waste products that require further treatment.
The most widely used process, i.e., ion exchange, requires peri-
odic regeneration, which consumes significant chemical inputs and
generates a highly concentrated brine waste that must be disposed
or treated.14 Both reverse osmosis and ion exchange only serve to
remove and store NO3

− in temporary waste reservoirs that require
further processing.15

Electrocatalysis provides an alternative solution toward
removing NO3

− through an electrochemical reduction reaction
(NO3

−RR).16 Unlike in ion exchange, a catalyst does not require
regeneration. Furthermore, NO3

−RR transforms NO3
− into benign

by-products that stem from the available reaction pathways rather
than storing it in excess brine solutions or biological wastes,
reducing the cost of subsequent water treatments. Factors such as
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the catalyst, applied potential, acidity, and reducing agent can be
adjusted to control the selectivity and activity.17,18 For example, Rh
has higher activity for NO3

−RR when compared to other platinum
group metals.19 Meanwhile, the use of NaCl and Na2SO4 solutions
as the electrolyte for a Pt catalyst demonstrated increased efficiency
for NO3

− removal. The NaCl solution, in particular, demonstrated
an increase in selectivity toward N2, a desired by-product in water
purification that safely dissipates back into the air.20

Despite the clear advantages, a major concern in the economic
viability of electrocatalytic NO3

−RR lies in the cost of the catalyst.
The most commonly used electrocatalysts are rare and expensive
metals such as palladium and platinum and their alloys, which
have demonstrated excellent activity for electrochemical NO3

−RR
in water.18 The use of precious metals drastically increases the mate-
rial cost of electrocatalysis with the recent costs (as of April 30,
2021) of Pt and Pd ranging up to $38 694/kg and $79 855/kg, respec-
tively.21 The search for catalysts composed of cheap earth-abundant
metals with high activity and selectivity is, therefore, crucial for the
commercial viability of electrocatalytic NO3

−RR.
Computational screening can potentially be used to identify

catalytically and commercially viable materials. Recently, computa-
tional screening has grown in popularity as a quick and efficient tool
for identifying heterogeneous catalysts based on a series of criteria
used to screen desired properties.22–26 Singh et al.,22 for example,
were able to identify 52 potential photocatalysts for CO2 reduction
using simple thermodynamic and electronic properties. However,
the high computational cost renders the explicit assessment of cat-
alytic activity and selectivity in candidate materials impractical in
these strategies.

Typically, these properties are calculated using microkinetic
modeling in conjunction with first-principles calculation methods,
such as density functional theory (DFT).27–30 Using the reaction
rates of elementary steps (i.e., activation and reaction energies,
Eact and Erxn), microkinetic models can determine the activity and
selectivity of material surfaces.31 Typically, Eact and Erxn are calcu-
lated with the expensive nudged elastic band (NEB) method. How-
ever, Brϕnsted–Evans–Polanyi (BEP) relations demonstrate that
Eact and Erxn can linearly scale as a function of the adsorption
energies (Eads) of intermediates, which can be determined with rel-
atively inexpensive DFT calculations. This scaling relationship can
be exploited to construct activity and selectivity models described by
Eads instead of Eact and Erxn. Previous screening strategies have used
such models to incorporate activity and selectivity criteria23,24,26 to
identify viable catalysts.

Recently, Liu et al.32 were able to construct such a model for the
activity of NO3

−RR and by-product selectivity as a function of the
adsorption energies of O and N (EO∗

ads and EN∗
ads ). Although the model

was constructed using the limited adsorption energies of elemental
transition metal surfaces, the predictive capabilities of these descrip-
tors were extended to screen several binary intermetallics with a
Pt–Ru based compound demonstrating excellent activity toward
NO3

−RR. A subsequent joint experimental and computational study
by Wang et al.33 validated the catalytic activity for Pt doped with
varying concentrations of Ru with Pt0.78Ru0.22, exhibiting the activity
for NO3

−RR on par with Rh.
These models can potentially be used to perform large data-

driven screening of materials with the hope of identifying cheap
earth-abundant electrocatalysts. However, the computational cost

of EO∗
ads and EN∗

ads using DFT is still impractical given the number of
materials, facets, and surface-adsorbate configurations that exist, the
combination of which would require millions of DFT calculations.
A predictive model for Eads is necessary if such a large-scale screen-
ing exercise is feasible. Recently, Chanussot et al., implemented the
Open Catalyst Project34 (OCP), a framework developed with the
purpose of using machine learning (ML) to construct such models.
The OCP dataset contains over 872 000 adsorption energies calcu-
lated with DFT across 55 adsorbates and 27 775 inorganic materials.
Combining this training dataset with state-of-the-art graph neural
network (GNN)35 models allowed for the construction of predictive
ML models generalized across any adsorbate and material surface
with mean absolute errors (MAE) as low as 0.3 eV. The model is then
able to determine the adsorption energy based on the initial unre-
laxed geometries of an adsorbed slab. The small MAE and generality
of these models can be used to screen the activity and selectiv-
ity of large material datasets based on the ML values for EO∗

ads and
EN∗

ads .
In this article, we present a data-driven screening frame-

work to accelerate our search for earth-abundant electrocatalysts
for NO3

−RR. We assessed the technical and commercial viabil-
ity of materials based on their resistance to corrosion, activity for
NO3

−RR, N2-selectivity, material cost,15 and thermodynamic sta-
bility. We began our search by screening all symmetrically distinct
binary transition metal alloys from the Materials Project (MP)36

and Automatic-Flow (AFLOW)37 databases, which yielded 59 390
materials. By leveraging the ML models for Eads developed in the
OCP and the models for activity and selectivity developed by Liu
et al.,32 we quickly and inexpensively estimated the catalytic capa-
bilities of these materials. Through a series of progressive criteria,
our screening pipeline has revealed 20 materials that satisfied all the
requirements for commercial viability. Furthermore, we were able to
qualitatively demonstrate that the compositional selection of catalyt-
ically active materials from our screening pipeline is consistent with
previous experimental and computational observations.

II. APPROACH
A. Slab generation

We described all surfaces considered in this work with a slab
model containing an atomic and vacuum layer of 8 and 20 Å thick,
respectively. We considered the surfaces of 12 randomly selected
and symmetrically distinct Miller index (hkl) planes with a max-
imum index of 3. We expanded our search to all (hkl) planes
with a maximum index of 4 when investigating the final set of
candidate materials. We excluded slabs that exceeded 250 atoms
to avoid subsequent intense usage of computational resources. To
avoid periodic interactions between the monatomic adsorbates, all
slabs were expanded along the length and width to at least 8 Å.
We, then, identified the adsorption sites for monatomic O and
N on the surfaces using the method described by Montoya and
Persson.38

B. DFT calculation parameters
All DFT energy calculations were performed using the Vienna

Ab initio Simulation Package (VASP)39,40 within the projector
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augmented wave (PAW)41 approach. The exchange–correlation
effects were modeled using the Perdew–Berke–Ernzerhof (PBE)
generalized gradient approximation (GGA)42 functional to be con-
sistent with the work performed by Liu et al.32 All slab and bulk
calculations were performed without spin-polarization except when
Fe, Ni, and Co were present. The external electrons were expanded
in plane waves with kinetic energy cutoffs of 400 eV. The ener-
gies and atomic forces of all calculations were converged to within
1 × 10−4 eV and 0.02 eV Å−1, respectively. The Methfessel–Paxton
method43 was chosen as the smearing algorithm. We used
Γ-centered k-point meshes of 35

a ×
35
b ×

35
c and 35

a ×
35
b × 1 for bulk

and slab calculations, respectively, with non-integer values rounded
up to the nearest integer.

In all DFT calculations and ML predictions of EO∗
ads and EN∗

ads, we
used the total energy of an isolated O and N atom, respectively, in a
16 × 16 × 16 Å3 box as the adsorbate reference energy.

All VASP input generation, slab modeling, adsorbate place-
ment, thermodynamic, and cost analysis were performed using the
Python Materials Genomics (pymatgen) package.38,44,45

C. Validation of machine learning and DFT
The OCP allows us to predict the relaxed adsorption ener-

gies of O and N from the initial structure of any intermetallic slab
(IS2RE). Consolidating the IS2RE model with existing adsorption
energy-based activity and selectivity maps allows us to efficiently
infer the catalytic capabilities of large material datasets without the
need of any DFT calculations. In this work, we adopted a modified
implementation of the Directional Message Passing Neural Network
(DimeNet++)58,59 model. DimeNet improves upon GNN models by
accounting for directional information in triplets of atoms via bond
angles and interatomic distances. The improvements developed by
Klicpera et al.58 modifies to the hidden layers of the neural net-
work to improve upon the runtime speeds and accuracy of DimeNet.
Under the OCP, we adapted the DimeNet++ model for slabs by
introducing a periodic boundary condition when constructing the
graph. We considered all interatomic interactions within a cut-
off radius of 6 Å, which under 256 hidden channels will yield
1.8 × 106 parameters. For a complete list of all other hyperparam-
eters, we direct the reader to Table S4 from the reference herein.34

We used this GNN model to predict EO∗
ads and EN∗

ads .
The training dataset from OCP is composed of adsorption

energies calculated using the revised PBE (rPBE) functional, which
is in contrast to the activity and selectivity maps built using the
PBE functional.32 We trained and validated the machine learning
model with a subset of the Open Catalyst 2020 (OC20) dataset
with a train/validation split of 183 075/9888,34 and then tested using
PBE data from this work to be consistent with Liu et al.32 Our
train/validation subset of the OC20 dataset contained 202 metallic,
1829 binary, and 2030 ternary intermetallic crystals queried from
the Materials Project36 with 82 different adsorbates (see Ref. 34).
The adsorption energy dataset was constructed by randomly sam-
pling low-Miller-index facets from the available intermetallics and
adsorbates.

For our test set, we used DFT to calculate 59 additional data
points for E∗N

ads and E∗O
ads of 30 Pourbaix stable compounds at ran-

domly chosen facets with a maximum Miller index of 3. We also
included the 52 data points from Liu et al.32 for the binary inter-
metallics with Miller indices of (310) and (211) for the body and

face centered cubic crystals, respectively. Figure 1 plots the DFT cal-
culated data points against the corresponding ML quantities with
triangular data points obtained from Ref. 32. R2 of the test set is
0.85, indicating a strong linear correlation between the DFT and ML
quantities. The test set MAE is 0.35 eV, which is consistent with the
MAE of 0.3 eV obtained from the validation set. Both the linear fit
for E∗N

ads and E∗O
ads demonstrate a slope close to unity with the ML

quantities for E∗O
ads consistently underestimating the DFT calculated

quantities by 0.39 eV, while the ML quantities for E∗N
ads overestimates

by 0.22 eV. The difference in functionals and the inherent MAE of
0.3 eV in the Dimenet++model is possibly responsible for the offset
of 0.39 eV in the ML values of E∗O

ads . This is in contrast to previ-
ous reports of the rPBE functional overestimating PBE by 0.1 eV
in regard to adsorption energy.60 Many materials and Miller indices
sampled in the test set were out-of-domain from the training and
validation sets. The strong linear correlation and consistent MAE
with this out-of-domain test set indicates that our model is general-
ized for any intermetallic material and facet. Since the offset for E∗O

ads
exceeds the expected MAE, we accounted for any disparity between
the ML and DFT quantities by adding 0.39 eV to all ML quantities
of E∗O

ads .
Next, we assess the predictability of the DFT inferred cat-

alytic performance using the computed TOF as our primary metric.
Here, we qualitatively compared previous experimental trends in
catalytic performance across different metals and alloys to the trends
in log(TOF) observed by Liu et al.32 in their calculations. Figure 2
plots the range of log(TOF) inferred from the DFT calculated EO∗

ads

FIG. 1. Plot of E∗N
ads and E∗O

ads (blue and red, respectively) with DPP machine learn-
ing results on the x-axis and corresponding DFT PBE-GGA results on the y-axis
with triangular and circular data points from Liu et al.32 and this work, respectively.
Fitted lines for E∗N

ads and E∗O
ads , and all data points are given in the blue, red, and

green dashed lines, respectively.
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FIG. 2. Plot of the estimated range of TOF obtained from microkinetic modeling by Liu et al.32 The formula of each alloy considered in the study is organized on the x-axis
from the lowest to highest range of TOF. Experimental performance trends of different alloys and metals obtained from the available literature are also displayed on top
(see references therein). Groups of alloys with trends qualitatively consistent with the work of Liu et al.32 are labeled in black, while alloys with inconsistent trends are
labeled in red. (a) Chen et al.,46 (b) Dima, De Vooys, and Koper,19 (c) Valiyeva et al.,47 (d) Hasnat et al.,48 (e) Wang et al.,33 (f) Hamid, Bae, and Lee,49 (g) Witońska,
Karski, and Gołuchowska,50 (h) Liu et al.,51 (i) Maia, Rodrigues, and Passos,52 (j) Park et al.,53 (k) Siriwatcharapiboon et al.,54 (l) Soares, Órfão, and Pereira,55 (m) Hasnat
et al.,48 (n) Hasnat, Karim, and Machida,56 and (o) Lemaignen et al.57

and EN∗
ads

32 for each material explored in the study. We then anno-
tated the corresponding sets of materials with a ranking of catalytic
performance using experimental TOF values when available in the
literature and the reported nitrate removal rate when not (see Ref. 2
and references therein).

We note our assessment of computational predictability for
experimental catalytic performance comes with additional caveats
that must be addressed. First, we acknowledged the experimental
rankings in Fig. 2, which were performed under varying conditions
(e.g., applied potential, pH, and support materials) derived from
varying references. We emphasize that the ranking of different mate-
rials presented here is confined to the same experiments and that no
comparisons of catalytic performance were done across different ref-
erences. This will prevent any bias in our ranking that results from
the varying experimental conditions while still allowing for a qual-
itative comparison between the experiment and DFT. Second, we
emphasize that although the computational results correspond pri-
marily to binary compositions of A3B, the experimental results do
not necessarily follow the same stoichiometry or crystal structures
with some studies focusing on the formation of nanocomposites or
doping of metal B. However, the implications of the DFT results

presented by Liu et al.32 was not to predict the catalytic performance
of intermetallics with an exact 3:1 ratio. Instead, the purpose was
to assess the performance of candidate materials resulting from the
synergy between two different metals using a standard crystal struc-
ture for ease in comparison. This synergy is possible, regardless of
the stoichiometry investigated by Liu et al.32 as demonstrated subse-
quently in a joint experimental and computational study of Pt–Ru,
whereby the same authors identified the optimal stoichiometry to be
Pt78Ru22.33

The majority of trends found from past experiments is quali-
tatively consistent with the trends for log(TOF) obtained from Liu
et al.32 with the exception of the work performed by Lemaignen
et al.,57 whereby Pd3Sn displayed superior catalytic performance
over Pd3Cu experimentally while the computational results demon-
strate the opposite. Previous experiments performed by Hasnat,
Karim, and Machida56 have also showed that Pd3Pt has superior
catalytic performance over Pd3Ag, which is inconsistent with the
computed results. Despite the minor discrepancies, the qualitative
consistency between the DFT and experimental results for all other
trends provides enough confidence to use DFT as a tool for catalyst
discovery. We infer by extension, based on the consistency between
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DFT and ML shown in Fig. 1, that the ML model is sufficient enough
to predict experimentally verifiable trends in activity and can be used
to perform large scale screening of electrocatalysts.

D. Modeling catalytic properties
EO∗

ads and EN∗
ads can also be used to describe the most probable

final by-product of NO3
−1RR, i.e., selectivity. We adapted the selec-

tivity maps from Liu et al.32 in Fig. 4(a) at 0.0 V, Fig. 4(b) at 0.1 V,
and Fig. 4(c) at 0.2 V into a single ternary decision map in Fig. 4(d).
We specifically highlighted the regions of N2 (blue) and NH3 (red)
selectivity as N2 is the desired by-product under the context of water
purification, while NH3 is desired for its chemical utility. For further
details about the derivation of Figs. 3 and 4, we direct the reader to
the references herein.32,33

A model for EO∗
ads and EN∗

ads allows us to leverage the activity
maps derived by Liu et al.32 to estimate the turnover frequency
(TOF) of NO3

−RR, the rate of the reaction per surface site [see
Figs. 3(a)–3(c)]. Henceforth, we will describe log(TOF) > −3 and

FIG. 3. Theoretical TOF plots as a function of EO∗

ads (x-axis) and EN∗

ads (y-axis) for
NO3

−1RR derived from Liu et al.32 under 0.0 V (a), 0.1 V (b), and 0.2 V (c) vs
RHE. The region of high activity in each TOF plot (black lines) is represented
by Eqs. (B1)–(B3) for (a)–(c), respectively. The activity is simplified to a binary
decision map (d) where any surface with a Euclidean distance of 0.3 eV from
Eqs. (B1)–(B3) are considered to have high activity (red area). The corresponding
individual areas of high activity are also shown in the black oval outline in (a)–(c).
ML predicted values for EO∗

ads and EN∗

ads using OC20 for the final 20 candidate mate-
rials are plotted in (d) as white circles (see Table III for the list of active facets for
each material). ML values for a selected number of elemental and intermetallic
compounds that exceeded $500/kg in cost but exhibited excellent activity in the
literature are also plotted as green circles.

FIG. 4. Binary decision maps for the selectivity of N2 (blue) and NH3 (red) as
a function of EO∗

ads (x-axis) and EN∗

ads (y-axis) derived from Ref. 32. under 0.0 V
(a), 0.1 V (b), and 0.2 V (c) vs RHE. Adsorption energies in overlapping areas of
red and blue can select NH3 or N2 depending on the applied potential. Panel (d)
simplifies selectivity by combining (a)–(c) into one overlapping decision map where
any data point that falls under it will be considered selective toward N2, NH3, or
both. ML predicted values for EO∗

ads and EN∗

ads using OC20 for the final 20 candidate
materials are plotted in (d) as white circles (see Table III for the list of active facets
for each material). ML values for a selected number of elemental and intermetallic
compounds that exceeded $500/kg in cost but exhibited excellent activity in the
literature are also plotted as green circles.

log(TOF) < −3 as high and low activity, respectively. We assessed
the NO3

−RR activity for each bimetallic surface under the applied
potentials of 0.0, 0.1, and 0.2 V vs RHE while minding the increase in
site competition for hydrogen evolution reactions (HER) at 0.0 V.32

III. RESULTS AND DISCUSSION
Figure 5 summarizes the selection criteria that we employed to

screen for candidate electrocatalysts. We evaluated all distinct binary
intermetallics and ground state elemental crystalline solids reported
in the MP and AFLOW databases composed of any combination of
the 26 transition metals from Sc to Au, which yielded 59 390 mate-
rials (338 binary/unary combinations). Hg and Cd are omitted from
the list of metals due to potential toxicity, while Tc is omitted for its
radioactivity.

The first criterion describes the Pourbaix stability, i.e., the
electrochemical stability of a material in an aqueous environment.
We quantify the Pourbaix stability using the Pourbaix decomposi-
tion energy (ΔGPBX), which is a function of the applied potential
(V) and pH of the environment. Materials with ΔGPBX = 0 eV
atom−1 are stable under such conditions, while materials with
ΔGPBX > 0 eV atom−1 are metastable with the likelihood of corrosion
increasing with ΔGPBX . It was shown that metastable materials with
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FIG. 5. Selection criteria for NO3
−RR electrocatalysts with the number of distinct materials that satisfy the current and all prior criteria (left). A periodic table above the first

criteria indicates the elements (26 transition metals) considered when screening for bimetallic materials in MP and AFLOW. The selection criteria is accompanied by a grid
map for each pair of elements with colors indicating the highest criteria satisfied by any material in that pair composition (right). Grid points on the diagonal correspond to
elemental compositions. Shaded grid points correspond to compositions with 0.2 < ΔGPBX < 0.5 eV atom−1. Tick labels on the x- and y-axis are sorted from the cheapest
(Fe) to the most expensive (Rh) element. Compounds passing the third criteria (selectivity) are designated as selecting N2 or both N2 and NH3 with / and X hatching,
respectively. Elements corresponding to each column (row) in the grid represent minority (majority) species in the compound.

ΔGPBX < 0.2 eV atom−1 are less likely to dissolve or corrode in exper-
iments.61 However, materials with ΔGPBX as high as 0.5 eV atom−1

have also been shown to be stable, albeit with many developing
passivation layers at the surface, which can inhibit their catalytic
capabilities.62 We allow any material with ΔGPBX < 0.2 eV atom−1

at 0.0 V < V < 0.2 V and pH = 7 to satisfy this criterion. Due to the
exclusive nature of ΔGPBX , only 3430 or 5.78% of the original 59 390
materials (92 out of 338 binary combinations) will satisfy the first
criterion with the chemical space confined to materials with a major-
ity/minority composition of Rh, Ir, Pd, Au, Pt, Ru, Os, Ag, or Cu. If
we expand our upper limit for ΔGPBX to 0.5 eV atom−1, we find 6971
or 11.74% of the materials (209 out of 338 binary/unary combina-
tions) will satisfy the first criterion (transparent grid points in Fig. 5);
however, these materials are more likely to be subject to surface pas-
sivation.62 This criterion will only account for bulk stability under
aqueous conditions instead of surface stability. A more accurate
assessment of surface stability under aqueous conditions can be per-
formed with the surface Pourbaix diagram, which requires extensive
DFT calculations of adsorbed OH, H2O, O, and H at varying degrees
of adsorbate concentration. Bulk Pourbaix stability, although not
exact, will at least provide an estimate of aqueous stability across
large sets of materials, which to an extent correlates with the rela-
tive stability at the surface without the need for expensive adsorption
calculations.

The second criterion assesses the activity toward NO3
−1RR of

the 3430 materials. A material will satisfy this criterion if any of its
surfaces exhibit a data point that lies in the region of high activ-
ity shown in Fig. 3(d). Using the IS2RE ML model from the OCP
framework (see Sec. II D), we predicted EO∗

ads and EN∗
ads for 12 ran-

domly selected surfaces of each of the 3430 candidates. From the

adsorption energies, we find that 1060 candidates will satisfy the sec-
ond criterion (84 binary combinations). Out of the 1060 materials,
308 materials exhibited high activity at an applied potential of 0 V
only, at which NO3

−RR competes with HER. Despite this, we stress
that the existence of HER competition does not completely render
NO3

−1RR inert. In fact, depending on the applied potential, H+ can
become the dominant product in HER instead of H2, which can aid
in facilitating N2 selectivity.15

Similarly, the third criterion assesses the selectivity toward N2

of each candidate by plotting the ML values for EO∗
ads and EN∗

ads over the
decision map shown in Fig. 4(d). We find 862 candidates (67 binary
combinations) with data points that lie in the area corresponding
to N2 selectivity, satisfying this criterion. Because of its chemical
utility, Fig. 4 also shows the region where selectivity toward NH3
is favorable. Of the 862 candidates, 811 can select either N2 or NH3
depending on the applied potential and facet, allowing for additional
utility beyond water purification, while the remaining 51 candidates
exclusively select N2.

The fourth criterion assesses the material cost of each com-
pound in $/kg/mol. To satisfy this criterion, the cost of a compound
must be less than $500/kg/mol. All metal prices in this study are
taken from March 2021.21,63,64 We note here that the catalytic prop-
erties (selectivity and activity), which requires expensive DFT calcu-
lations of E∗N

ads and E∗O
ads , are assessed prior to our cost criterion. The

computational efficiency of our selection criteria should, therefore,
account for the cost prior to catalytic properties. However, since our
machine learning model allows us to assess E∗N

ads and E∗O
ads with neg-

ligible computational cost, we elected to assess catalytic properties
prior to cost in order to identify potential candidates regardless of
material cost. As such, we find that an overwhelming majority of
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viable candidates will have varying concentrations of the top seven
most expensive metals. By confining materials based on cost, we sig-
nificantly reduce the number of viable candidates from 862 to 29
(four binary combinations). The remaining binary compounds are
Cu-based intermetallics containing Zn, Ni, Co, or Ag. Cu–Fe based
components and elemental Zn, Ni, and Co are also viable candidates
when the limit for aqueous stability is defined as ΔGPBX < 0.5 eV
atom−1.

The fifth and final criterion assesses the thermodynamic stabil-
ity of the candidate material via the energy above hull (Ehull) or the
formation energy of a material relative to the ground state. Similar to
ΔGPBX , materials with Ehull = 0 eV atom−1 are at the thermodynamic
ground state while materials with Ehull > 0 eV atom−1 are metastable
with the likelihood of experimental synthesizability decreasing as
Ehull increases. Materials with a calculated Ehull < 0.1 eV atom−1 have
been shown to have reasonable rates of demonstrated synthesis in
experiment.65 We will use this criterion as our final condition for
viable catalyst candidates. Of our original 59 390 materials, 20 can-
didates listed in Table I have passed all five criteria. These candidates,
from cheapest to most expensive, are ZnCu8, 6 Cu–Ni alloys, CoCu7,
and 12 Cu–Ag alloys. The majority of materials exhibits high activity
at an applied potential of 0 V only. All Cu–Ni compounds and two
Cu–Ag compounds demonstrate high activity in an applied poten-
tial range from 0 to 0.1 V. However, none of the 20 candidates are
active at 0.2 V. All candidates can select either N2 or NH3 as a by-
product depending on the applied potential and facet except for
C2/m Cu2Ag, which exclusively selects N2.

Unsurprisingly, a large majority of compounds predicted to
exhibit high turnover frequencies contain noble metals (Rh, Ir, Pd,
Au, Pt, Ru, Os, Ag, or Cu), which are known for their resistance
to chemical erosion (low ΔGPBX) and excellent catalytic properties

(high TOF).18,48,56,57 AgPd, in particular, has been known to have
the highest reported experimental turnover frequency found so far.51

From their volcano maps, Liu et al.32 previously predicted RuPt3
alloys as having excellent catalytic activity, the results of which were
subsequently validated in Pt-doped Ru experiments in a separate
study.66 We indeed observed high activity in our ML framework
when investigating both Ag–Pd and Ru–Pt alloys (see Fig. 3). How-
ever, these components are far too expensive to be commercialized
for NO3

−RR. Under a spot price for Pd at $68 643/kg (accessed from
https://www.apmex.com as of 26 June 2020),64 the cost of Pd cata-
lysts in a trickle reactor will range from $0.08 to $1.53 in a catalyst
lifespan of 20 to 1 year, respectively. These prices make electrocataly-
sis economically comparable with ion exchange.15 With recent price
increases in precious metals, the price of Pd has risen to $79 855/kg
(as of 30 April 2021), thus providing no economic advantage over
ion exchange. Although Pt and Ru are cheaper than Pd, the volatil-
ity of precious metal prices and the risk of price increases exceeding
$68 643/kg in the future makes the long-term economic viability of
precious metals unreliable.

Beyond precious metals, we predicted many inexpensive Cu-
based compounds to have high activity. Among mono-metallic
catalysts, Cu is widely explored in the literature for its relatively high
activity for NO3

−RR and has been shown to outperform Pt-group
precious metals in regard to activity under acidic conditions.19,28,67

The activity of Cu surface sites is further enhanced when alloyed
with precious metals, such as Pt, Ir, Pd, and Rh,55,68 as well as com-
mon 3d metals, such as Fe, Zn, and Ni,66,69–72 which is consistent
with our predictions (albeit Fe–Cu is shown to have a relatively
high aqueous decomposition energy). This stems from the shift in
the d-band center of Cu surface sites, which enhances NO3 adsorp-
tion. When alloyed with Ni, Cu sites adsorb NO3

− anions, while Ni

TABLE I. The formula, space group, cost, Pourbaix decomposition energy (at 0.0 and 0.1 V vs RHE), and selectivity of the 20 candidate materials that have satisfied all criteria
of our screening process.

Formula Space group Cost ($/kg mol−1) ΔGaq (0.0 V) (eV/atom) ΔGaq (0.1 V) (eV/atom) Active at 0.1 V N2 NH3

ZnCu8 I4/mmm 8.78 0.18 0.29 No ✓ ✓

Cu5Ni Cm 10.93 0.15 0.27 Yes ✓ ✓

Cu5Ni Amm2 10.93 0.15 0.27 Yes ✓ ✓

Cu4Ni I4/m 11.22 0.17 0.29 Yes ✓ ✓

Cu3Ni R3̄m 11.65 0.20 0.33 Yes ✓ ✓

Cu3Ni I4/mmm 11.65 0.21 0.33 Yes ✓ ✓

Cu3Ni Cmmm 11.65 0.21 0.33 Yes ✓ ✓

CoCu7 Fm3̄m 14.52 0.19 0.30 No ✓ ✓

Cu4Ag I4/m 261.58 0.08 0.16 No ✓ ✓

Cu3Ag P4/mmm 315.24 0.08 0.15 Yes ✓ ✓

Cu3Ag Pmmm 315.24 0.09 0.16 No ✓ ✓

Cu3Ag Pmmn 315.24 0.10 0.18 No ✓ ✓

Cu3Ag C2/m 315.24 0.10 0.18 Yes ✓ ✓

Cu3Ag I4/mmm 315.24 0.10 0.17 No ✓ ✓

Cu3Ag Pmmn 315.24 0.10 0.17 No ✓ ✓

Cu2Ag P63/mmc 397.92 0.07 0.14 No ✓ ✓

Cu2Ag C2/m 397.92 0.09 0.15 No ✓

Cu2Ag P63/mmc 397.92 0.07 0.14 No ✓ ✓

Cu2Ag C2/m 397.92 0.10 0.17 No ✓ ✓

Cu5Ag4 I4/mmm 496.75 0.10 0.15 No ✓ ✓
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sites adsorb H+ to facilitate the successive deoxygenation of NO3
∗

to N∗.73

Although many of the intermetallic alloys screened considered
in this study were not stable in an aqueous environment, it is reason-
able that these synergistic effects can be achieved when alloying Cu
with other inexpensive metals via surface doping as has been shown
in many experimental studies to produce an effective and economi-
cal electrocatalyst. Our findings also demonstrate that the catalytic
viability of Cu–Ag and Cu–Ni candidates are insensitive to com-
position and structure as shown by the diversity of such materials
reported in Table I, which makes surface doping of Cu with Ag or
Ni a possible approach to create an electrocatalyst.

As far as the authors are aware, Cu–Co and Cu–Ag com-
pounds have yet to be explored as electrocatalysts for NO3

−RR in
the literature.

Given that the purpose of our work was to identify promising
catalysts based on criteria that could be rapidly assessed for thou-
sands of candidate materials, we have naturally had to neglect several
factors that will be critical to the further development of a prac-
tical nitrate reduction electrocatalyst for water purification. First,
our screening assumed that all reactions occurred under a neutral
pH as N2 production became more favorable at pH > 4.74–77 Fur-
thermore, in the context of water purification, many groundwater
sources have near-neutral pH (e.g., 6–8), and it is generally desirable
to minimize pH adjustment since it entails costly additional chem-
ical handling.15,78 Hence, evaluating catalyst performance at neutral
pH is a sensible starting point.

Second, our computational methods did not capture the effects
of solvation or competition by ubiquitous environmental ions nor
did they account for the effect of the electrolyte. Common ions,
such as Cl−, Br−, SO4

−2, and PO4
−3, have been shown to affect

the activity and selectivity of NO3
−RR in both passive reduction on

zero-valent iron and electroreduction.74,79 This is especially impor-
tant in the context of water purification where nitrate runoff may
enter natural waters containing background electrolytes such as
NaCl and Na2SO4. Chloride and sulfate anions, in particular, have
been shown to decrease catalytic activity by poisoning and dissolving
the catalyst.80

Despite this, both Liu et al.32 and this study (see Fig. 2) have
been able to approximate past experimental trends in activity using
the microkinetic models. Furthermore, scaling relationships used
to develop volcano maps are known to generalize models beyond
single adsorbates on slabs, including solid–liquid interfaces, which
shift the adsorption energy by a constant value.81,82 Finally, microki-
netic simulations of adsorbate coverage demonstrate H∗ and NO3

−∗

to be the dominant competing species under negative and positive
potentials, respectively; however, additional simulations of adsorp-
tion for common solvents and electrolytes are required to gauge
their competitiveness with H∗ and NO3

−∗. Furthermore, accurately
modeling electrolyte and solvation effects would require substantial
additional computational effort. At a minimum, it would be nec-
essary to perform DFT calculations of co-adsorption of NO3

−RR
intermediates with the aforementioned anions at varying concen-
trations of an implicit solvent. Higher accuracy could be obtained
by calculating a liquid interface with the catalyst surface, which can
be used to model an electrolyte interface or an explicit solvent but
requires costly ab initio molecular dynamics simulations. However,
both the OC20 framework and the microkinetic models developed

by Liu et al.32 used in this study are limited to single intermediate
adsorption on a catalyst surface under a vacuum interface.

Finally, since our screening criteria were based on thermo-
dynamics, we did not estimate the overpotentials of our proposed
materials or directly determine their turnover frequencies via, e.g.,
transition state calculations. Both factors will have an important
impact on the ultimate economic viability of the electrocatalyst.

Despite the simplifications required by the scale of our screen-
ing (50 000 +materials), by identifying a small number of promising
candidates, this work will facilitate more sophisticated simulations
and experiments that can further evaluate the factors discussed
above.

IV. CONCLUSION
By coupling machine learning with previous scaling relation-

ships for NO3
−RR, we developed an efficient and computationally

inexpensive screening strategy that revealed 20 economically viable
electrocatalysts out of an initial pool of more than 50 000 candidates.
The majority of candidate materials are Cu-based intermetallics
owing to the excellent activity of Cu and its synergistic effect with
other transition metals. Most of the candidates can select either
N2 or NH3, depending on the applied potential and facet, giving
it utility in water purification as well as NH3 production. We per-
formed DFT calculations to verify the ML adsorption energies of a
select number of viable catalytic materials, most of which demon-
strated adsorption energies within or adjacent to the areas of high
activity. The catalytically active compounds exhibited in our grid
map of binary intermetallics (Fig. 5) contain precious metals as well
as Cu, which is in agreement with previous studies. Future studies
will explicitly calculate the reaction pathways and transition states
of the materials proposed herein as well as experimentally validate
their catalytic activity toward NO3

−RR.
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APPENDIX A: POURBAIX DECOMPOSITION

All candidates identified are metastable under aqueous condi-
tions with a ΔGPBX < 0.2 eV/atom. The candidate catalyst can either
dissolve into ionic components or the surface can be passivated into
a solid listed in Table II depending on factors such as temperature,
solvation, or pressure.

APPENDIX B: ACTIVITY AND SELECTIVITY
DECISION MAPS

To determine the area on the maps corresponding to high activ-
ity [log(TOF) > −3], we approximated a line of high activity for each
heat map that lies on the center of the warmest region of the map
[see Figs. 3(a)–3(c)] given by

EN∗
ads = 2.27EO∗

ads + 6.95,{EO∗
ads : −5.90 < EO∗

ads < −5.13}, (B1)

EN∗
ads = 2.44EO∗

ads + 7.21,{EO∗
ads : −5.30 < EO∗

ads < −4.85}, (B2)

TABLE II. The ground state components that four binary compositions can
decompose into under pH = 7 and an applied potential of 0.0 and 0.1 V.

0.0 V 0.1 V

Zn–Cu Zn+2
+ Cu+1 CuO(s) + Zn+2

Ni–Cu Ni+2
+ Cu+1 Ni+2

+ CuO(s)
Ag–Cu Ag(s) + Cu+1 Ag(s) + CuO(s)
Co–Cu Cu+1

+ Co+2 Co+2
+ CuO(s)

EN∗
ads = 2.27EO∗

ads + 5.17,{EO∗
ads : −5.10 < EO∗

ads < −4.39}, (B3)

with Eqs. S1–S3 corresponding to 0.0, 0.1, and 0.2 V vs RHE, respec-
tively. The MAE of the ML model developed by Chanussot et al.34

is ∼0.3 eV. As such, we consider a buffer distance of 0.3 eV from

TABLE III. The Miller indices listed in the third column correspond to the facets with
high activity and N2 selectivity. The tabulated data for price, Pourbaix decomposition
energy, activity, and selectivity can be found in Table I.

Formula Space group Miller indices (hkl)

ZnCu8 I4/mmm (443), (334), (331)

Cu5Ni Cm (243̄), (212̄), (213̄), (403̄), (203̄), (301̄)
(103), (214̄), (234̄), (234), (401̄), (302̄)

Cu5Ni Amm2 (334), (233), (041), (032), (031), (012)
(023), (013), (124), (114), (104)

Cu4Ni I4/m (221), (320), (310), (223), (430)
(212), (410), (201), (334), (331)

Cu3Ni R3̄m (103̄), (104̄), (103), (104), (41̄0), (41̄4)
(21̄2), (323̄), (320), (41̄4̄), (102̄), (102)

Cu3Ni I4/mmm (103), (430), (211), (210), (414), (410)
(320), (313), (310), (112), (102), (113)

Cu3Ni Cmmm (120), (221), (124), (201), (243), (320)
(121), (140), (210), (233), (341), (441)

CoCu7 Fm3̄m (221), (332), (331)

Cu4Ag I4/m (221), (212), (423), (334), (223), (213)

Cu3Ag P4/mmm (210), (213), (114)

Cu3Ag Pmmm (120), (223), (124), (113)

Cu3Ag Pmmn (143), (132), (124), (123)
(113), (243), (423)

Cu3Ag C2/m (114), (123̄), (113), (123), (223), (124̄)
(134̄), (134), (214), (234̄), (234), (334̄)

Cu3Ag I4/mmm (334), (324), (223), (213)

Cu3Ag Pmmn (124), (123), (203)

Cu2Ag P63/mmc (336̄4), (303̄4), (101̄2), (202̄3), (101̄3)

Cu2Ag C2/m (323), (234̄), (112̄), (214̄)
(423), (211), (212̄), (114)

Cu2Ag P63/mmc (101̄2), (101̄4), (101̄3)

Cu2Ag C2/m (112̄), (113̄), (313̄), (114̄), (114), (123̄)
(123), (214̄), (223̄), (223), (323), (234̄)

Cu5Ag4 I4/mmm (331), (443)
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Eqs. S1–S3 as potential regions of high activity, which yields an
ellipse around the corresponding line. The areas within the three
ellipses (red) are considered regions of high activity, whereas areas
outside the ellipsis will have low activity.

APPENDIX C: FACETS OF CANDIDATE MATERIALS

Table III lists the formula, space group, and facet Miller indices
of the 20 candidate materials that have satisfied all criteria of our
screening process.
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