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The efficiency of H2 production via water electrolysis is limited by the sluggish oxygen evolution reaction

(OER). As such, significant emphasis has been placed upon improving the rate of OER through the anode

catalyst. More recently, the Open Catalyst 2022 (OC22) framework has provided a large dataset of density

functional theory (DFT) calculations for OER intermediates on the surfaces of oxides. When coupled with

state-of-the-art graph neural network models, total energy predictions can be achieved with a mean

absolute error as low as 0.22 eV. In this work, we interpolated a database of the total energy predictions

for all slabs and OER surface intermediates for 4119 oxide materials in the original OC22 dataset using

pre-trained models from the OC22 framework. This database includes all terminations of all facets up to a

maximum Miller index of 1. To demonstrate the full utility of this database, we constructed a flexible

screening framework to identify viable candidate anode catalysts for OER under varying reaction con-

ditions for bulk, surface, and nanoscale Pourbaix stability as well as material cost, overpotential, and

metastability. From our assessment, we were able to identify 122 and 68 viable candidates for OER under

the bulk and nanoscale regime, respectively.

1 Introduction

As the global focus shifts increasingly towards renewable
energy, there has been a significant rise in the demand for
cost-effective and environmentally sustainable energy storage
and transmission methods. Electrochemical water splitting, or
water electrolysis, is a sustainable and promising means of
evolving H2 thanks to the wide abundance of water. This
process involves two coupled half-reactions: hydrogen evol-

ution reaction (HER) and the significantly slower oxygen evol-
ution reaction (OER) which has primarily been the bottleneck
in advancing water splitting technology. The search for a
highly active anode catalyst for OER is therefore paramount to
the realization of practical water splitting technology.1–4

Transition metal oxides are a promising class of catalysts for
OER due to their varying oxidation states allowing for more
efficient multi-electron transfer, stability under highly acidic con-
ditions favorable towards OER, and active undercoordinated tran-
sition metals sites. In regard to commercialized catalysts, IrO2 and
RuO2 are the benchmark catalysts for OER, exhibiting low overpo-
tentials (an indicator of activity) of 0.25 to 0.5 V under acidic con-
ditions.5 However, the material cost of precious metals ($18315
and $155727 per kg for RuO2 and IrO2 respectively as of March
20216–8 with a price variation of ±$9969 for RuO2 and +$80370 for
IrO2 in the last 24 years) limits their widespread adoption.
Consequently, there is much desire to identify cheaper materials
for catalysts in OER while maintaining similar performance.

Despite the abundance of unary and binary oxides, very few
are capable of exhibiting both high catalytic activity and stability
under operating conditions. Computational analysis performed
by Wang et al.9 indicated only 68 bimetallic oxides from a pool
of 47814 were stable with a Pourbaix decomposition energy
(ΔGPBX) of 0.5 eV per atom or less under acidic conditions
(pH = 0) and an applied potential cycle between 1.2 and 2.0 V.
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Gunasooriya and Nørskov10 calculated the overpotential of these
candidate oxides and identified only 11 nonbinary metal oxides
with a promising overpotential of less than 0.85 V.

It is possible that many materials filtered out by the highly
discriminant electrochemical stability criteria can also exhibit
competitive overpotentials if stabilized. Nanoscale stability,
elemental doping, and the introduction of oxygen vacancies
have been demonstrated to be effective means of improving
stability.1,11,12 Nanoscaling in particular presents a promising
avenue for stabilizing oxides under operating conditions while
exposing a greater number of active sites through the increas-
ing surface area-to-volume ratio (SA : V).13–15

However, an accurate evaluation of the nanoparticle for-
mation energy not only requires the thermodynamic contri-
butions of the bulk, but the surface as well. Doing so requires
an ensemble of expensive Density Functional Theory (DFT) cal-
culations of the bare surfaces for one material. Likewise, accu-
rate evaluations of the overpotential requires an even larger set
of calculations for all the surface intermediates participating
in OER. As such, doing so for the massive pool of binary and
unary oxide materials available will quickly become computa-
tionally expensive and unfeasible.

Machine learning (ML) potentials and screening frameworks
have recently contributed significantly in rapidly predicting candi-
date catalysts without the need for expensive systematic DFT
screening.16–20 Among these efforts, the Open Catalyst Project
(OCP)21 framework has stood out as having the largest dataset of
carefully curated DFT calculations for non-oxide slabs and surface
intermediates to-date. ML models pre-trained with the OCP has
allowed for large scale interpolation efforts to predict binding ener-
gies, enabling high-throughput screening efforts to identify viable
catalyst candidates22 and explore fundamental surface chemistry.23

More recently, the Open Catalyst 2022 (OC22) framework has
expanded upon this dataset by incorporating random combi-
nations of 4732 oxide materials, Miller indices up to 3, and surface
intermediates involved in OER.24 These efforts have yielded predic-
tive ML models with total energy mean absolute error (MAE)s of
less than 0.22 and 0.69 eV for in domain (materials observed
during training) and out of domain predictions, respectively for the
GemNet-OC architecture, respectively.

In this manuscript, we utilized a pre-trained model from
the OC22 framework to interpolate the surface energies and
OER binding energies for 4119 in domain oxide materials on
all facets up to a maximum Miller index (MMI) of 1. To
demonstrate the applicability of our interpolated database, we
constructed a high-throughput screening framework with a set
of progressive criteria that can be modified or expanded upon
for ease of customizeability in order to evaluate the commer-
cial and practical viability of each material for OER. Our
general framework evaluates materials based on thermo-
dynamic stability, overpotential, and material cost. We also
expand upon other screening criteria such as the possibility of
nanoscale stabilization or the faceting of surfaces on the equi-
librium crystal structure. We propose 190 possible candidates
for OER under the bulk and nanoscale regime that warrant
further experimental investigation.

2 Methods

All analyses were performed using the python materials geno-
mics (pymatgen)25–28 and Atomic Simulation Environment
(ASE)29 packages.

2.1 Slab generation

We described all facets up to a MMI of 1 containning an atomic
and vacuum layer of ca. 12.5 Å thick. The bulk materials used
for slab construction in this study were obtained from the
Materials Project.30 We also considered all terminations for
each facet (sans slabs exceeding 200 atoms) while maintaining
equivalent surfaces on both sides of the slab which conse-
quently resulted in non-stoichiometric slabs with respect to the
bulk formula. Although the original OC22 dataset covered 4732
distinct bulk oxide materials, the conventional unit cell of some
of these materials contains over 100 atoms making the construc-
tion of slabs exceed our 200 atom limit for the majority of facets
considered. As such, we limit our study to slabs constructed
from unit cells of less than 100 atoms. Furthermore, slabs con-
structed from a select number of materials resulted in the forces
in the ML model being unconverged. Thus, we ommitted 609
from the original 4732 materials in the OC22 dataset that exhibi-
ted these behaviors, with our final bulk set containing X binary
(A–B–O) and X unary (A–O) oxides. For all slabs constructed, we
modelled the surface intermediates of O*, OH*, and OOH*. To
avoid periodic interactions between the adsorbates, all slabs
were expanded along the length and width to at least 8 Å. We
assumed all adsorbates bind through the O atom on available
undercoordinated metal sites. All bare surface and surface inter-
mediate models were constructed using the python framework
adapted from OC22.24,31,32

2.2 DFT and machine learning settings

All DFT calculations were performed using the Vienna Ab Initio
Simulation Package (VASP)33–36 within the Projected
Augmented Wave (PAW)37 approach. We modeled the
exchange–correlation effects with the Perdew–Berke–Ernzerhof
(PBE) generalized gradient approximation (GGA) functional.38

All calculations were performed with spin-polarization with a
plane wave energy cut-off of 500 eV. The energies and atomic
forces of all calculations were converged to within 1 × 10−4 eV
and 0.05 eV Å−1, respectively. We used Γ-centered k-point

meshes of
30
a

� 30
b

� 1 for slab calculations, with non-integer

values rounded up to the nearest integer. We also apply a
Hubbard U correction to chemical systems as suggested by the
Materials Project39 to account for missing electron interactions.

We used a pre-trained model for the Structure to Energy and
Forces (S2EF)-Total task from the OC22 framework to perform all
machine learning predictions of the relaxed structure and total
energy. The entirety of the Open Catalyst 2020 (OC20) dataset
(1281040 DFT relaxations) was used to train an S2EF-Total model
which was subsequently fine-tuned with the OC22 dataset (62331
DFT relaxations) to better predict the total energies of oxide sur-
faces and surface intermediates. The model was trained using the
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GemNet-OC architecture40 due to its superior performance in
energy predictions when compared to other graph neural
network (GNN) architectures as a consequence of its improved
capturing of long-range and quadruplet interactions.

For further details regarding additional parameters used in
VASP or the construction of the machine learning model, we
refer the reader to Tran et al.24

All OC22 S2EF predictions and DFT calculations of slabs
were performed with selective dynamics. In regards to surface
energy predictions, both the bottom most and topmost layer of
atoms within 1.25 Å were allowed to relax in the bare slab in
order to ensure both surfaces had equal surface energy contri-
butions. For the adsorption energies, only the topmost layer of
atoms within 1.25 Å and any adsorbates were allowed to relax in
the bare slab and surface intermediates. To avoid inadvertent
desorption and dissociation of adsorbates during our ML relax-
ation, we applied a spring constant of 7.5 eV Å−2 between all
adsorbate atoms to preserve the identity of the molecule and
between the adsorbate and host surface atoms whenever the
adsorbate drifts 2 Å away from its initial position along the axis
perpendicular to the surface.41,42 Similarly, we also applied the
same restorative force to all surface atoms when the relaxed tra-
jectory exceeds 1 Å from the initial position of the ions to avoid
drastic surface reconstruction. While this approach yields better
interpretability for relaxed adsorption geometries, we recognize
the inherent artificiality of these constraints and acknowledge
the potential for desorption and dissociation. Consequently, we
further implemented ML relaxation without such constraints on
relaxed geometries exhibiting low overpotentials to verify the
absence of desorption and dissociation phenomena. All values
of overpotentials and Gibbs free energies reported in the main
manuscript as well as Tables S1–S14† are relaxed without these
additional constraints unless stated otherwise. Comparisons of
the overpotential and Gibbs free energy obtained with and
without these constraints can be found in the ESI.†

2.3 Surface thermodynamics

All bare slabs of formula AnxBny+kOnz+j, with A and B being two
metal components, are constructed from a bulk ternary oxide
of AxByOz. We can calculate the surface energy of any slab of
AnxBny+kOnz+j with the following:

γ μB; μO2

� � ¼ E
AnxBnyþkOnzþj

slab � nE
AxByOz

bulk þ kμB þ j 12 μO2

� �
2A

ð1Þ

where E
AnxBnyþkOnzþj

slab is the total energy of the bare slab, EAxByOz

bulk is
the total energy per formula unit of the bulk crystal, and A is
the surface area. We used correction values from the Materials
Project when evaluating γ to account for the mixing of quan-
tities determined with GGA and GGA+U.26,39,43 The chemical
potentials, μi, accounts for any nonstoichiometric species
(with respect to bulk stoichiometry) in the slab formula.

The chemical potential of oxygen (ΔμO2
) can be referenced

to the electrochemical decomposition of water to O2(g):

2H2OðgÞ ! 4ðHþ þ e�Þ þ O2ðgÞ : 4:92 eV ð2Þ

which allows us to rewrite μO2
(and thereby γ) as a function of

pH and applied potential (U) as such:

ΔμO2
¼ 4:92þ 2μ°H2O � 4

1
2
μ°H2

� eU � kBT pH ln 10
� �

þ ΔGO*

corr

ð3Þ

where ΔGO*

corr corrects for the Gibbs free energy of excess or
deficient oxygen at the surface (see Tran et al.24 and Gunasooriya
and Nørskov10 for details). We will assume typically employed
operating conditions for acidic OER (pH = 1 and U = 1.8 V at T =
80 °C or 60 °C)9,44 (ΔμO2

= −1.30 eV) when assessing the surface
energy of all materials as illustrated in Fig. 1(a and b). For slabs
containing excess or deficient metal (B) species, the chemical
potential of component B is conventionally referenced with
respect to the per atom energy of the ground state bulk crystal of
pure component B (e.g. μFe = ΔμFe + EDFTBCC;Fe). By varying the
chemical potential of component B, we can stabilize different
surface terminations of the same facet as shown in the surface
Pourbaix diagram in Fig. 1(a and b).

To determine the nanoscale stability of metastable and
unstable materials under operating conditions, we assessed
the nanoparticle formation energy given by:

GNP
f ¼EV pH;V ;Tð Þ 4

3
πr3

� �
þ γ̄ pH;V ;T ;ΔμMð Þ 4πr2

� � ð4Þ

whereby EV is the Pourbaix formation energy per volume of the
unit cell, γ̄ is the weighted surface energy of the Wulff shape
(an analogue to the nanoparticle morphology), and r is the
radius of the nanoparticle. Detailed explanation of these quan-
tities can be found in the ESI.† Fig. 2 demonstrates how a less
stable compound (CaTi2O5) can become more stable than the
ground state compound as nanoparticle size and ΔμTi
decreases. The size effect will change the relative contribution
of surface energy and bulk Pourbaix formation energy to GNP

f

Fig. 1 Surface Pourbaix diagram of the (001) facet of CaCr2O4 at T =
80 °C under ΔμCr = −4 eV (a) and ΔμCr = 0 eV (b). The blue dashed line
indicates the equilibrium conditions for OER while the black marker
indicates reference conditions for OER (pH = 1 and U = 1.8 V). The
phases in (a) and (b) are color coded with the corresponding termin-
ations of the (001) facet in (c).
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while ΔμTi changes the overall particle morphology and
thereby surface energy of the particle.

The scope of this study will explore the water nucleophilic
attack (WNA) mechanism for OER, a four step mechanism
where two water molecules sequentially bind to a metal at the
surface and release an electron–proton pair at each step as
shown in Fig. 3.45 We realize and emphasize that the WNA
mechanism is one of many approximations for modeling OER
and that it is possible for certain materials to prefer alternative
mechanisms e.g. the oxo-coupling mechanism or lattice
oxygen evolution reaction.46–50 However, we focus on the WNA
mechanism on account of its ubiquity in computational
studies51–55 and supporting experimental evidence.47,56 We
can determine the overpotential for this reaction by identifying

the largest energy difference between each step, reaction
energy (ΔGrxn) with the following:

η ¼ maxðΔG i;ΔG ii � ΔG i;ΔG iii � ΔG ii; 4:92� ΔG iiiÞ=e
� 1:23 V ð5Þ

where ΔGi, ΔGii, and ΔGiii are the Gibbs free energy of each
reaction step, 4.92 eV is the Gibbs free energy to dissociate two
water molecules into O2 and 4(H+ + e−) shown in eqn (2), and
1.23 V is the equilibrium potential for water decomposition.
Here, the step corresponding to the largest value of ΔGrxn is
also called the potential determining step (PDS). We can
derive the Gibbs free energy of each step listed in eqn (i)−(iv)
(see Fig. 3) as such:

ΔGi ¼ EOH*

ads þ ΔGOH*

corr þ μHþ þ μe� ð6Þ

ΔGii ¼ EO* þ ΔGO*

corr þ 2 μHþ þ μe�ð Þ ð7Þ

ΔGiii ¼ EOOH* þ ΔGOOH*

corr þ 3 μHþ þ μe�ð Þ ð8Þ
where EOH*

ads , E
O*

ads, and EOOH*

ads are the electronic adsorption ener-
gies of the intermediates for OER and GOH*

corr , G
O*

corr, and GOOH*

corr

are correction terms for the Gibbs free energy derived in the
ESI† of OC22.24

To minimize the number of predictions needed, we will
begin by using a quick scaling relationship given by ΔGiii =
ΔGi + 3.26 10,24 to estimate ΔGiii. This approach is particularly
beneficial for OOH*, where the significantly greater rotational
freedom leads to a substantial increase in potential adsorbate
placements. We will then perform additional predictions for
EOOH* for surfaces exhibiting promising activity (η < 0.75 V)
using eqn (8) to more accurately determine the overpotential.
ML relaxations exhibiting dissociation or desorption of inter-
mediates are omitted in any interpretation of η. More details
regarding dissociation and desorption events occurring in the
dataset as well as a comparison between η obtained with eqn
(8) and scaling relationships can be found in the ESI.†

Only the most stable site for OH* dictated by EOH*

ads from a
set of considered adsorption sites on the same surface is con-

Fig. 2 Nanoscale stability phase diagram for the Ca–Ti–O chemical
system plotted using GNP

f as a function of the chemical potential of Ti
(ΔμTi) and nanoparticle radius. The red region represents the less stable
(higher EPBX) phase (CaTi2O5) while the cyan region represents the
ground state phase (Ca2Ti3O8). The nanoparticle morphology and
surface energy change as a function of ΔμTi indicated by the inset Wulff
shapes.

Fig. 3 Reaction diagram for the WNA on an ideal catalyst (dashed lines) and LaMnO3 (100) surface (solid lines) at 0 V (black) and the equilibrium
potential of OER (red). An illustration of each reaction step is shown at the bottom (red circles are oxygen while grey circles are hydrogen/protons).
Reaction energies for LaMnO3 were derived from Man et al.45 The chemical equation between each reaction step (1–4) is listed on the right (i–iv).
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sidered when determining η. We maintain the adsorption site
corresponding to the most stable site of OH* when consider-
ing EO*

ads and EOOH*

ads .
Further details regarding the derivation of all thermo-

dynamic quantities and scaling relationships can be found in
the ESI.†

3 Results and discussion
3.1 Database scope and usage

We emphasize that the purpose of both the OC20 and OC22
datasets was to establish a large and diverse set of DFT cal-
culated surfaces and surface intermediates for the purpose
of training ML potentials generalized to infer the total DFT
of any slab and adsorbate combination. To maximize the
diversity of the sample set, the OCP curated DFT calcu-
lations of randomly selected combinations of materials, sur-
faces, and adsorbates. The scope of the dataset does not
encompass a comprehensive database for evaluating η

directly, as many necessary data points are missing illus-
trated in Fig. 4. The construction of a comprehensive data-
base is a herculean task that is immeasurably costly and
time consuming with DFT alone. However, by consolidating
the S2EF-total model to predict thermodynamic overpoten-
tials, we can potentially infer the catalytic activity of large
material datasets for OER within a reasonable degree of
error with respect to DFT.

Using the previously developed ML models, we systemati-
cally extrapolated the total DFT energy of all terminations for

all facets up to a MMI = 1 for all 4119 materials considered in
this study. We emphasize that although the original training
pool does consider selections of bare and adsorbed surfaces
up to MMI = 3, the complete dataset is biased towards facets
with a MMI = 1 with 39573, 15482, and 7276 data points of
MMI = 1, 2 and 3 respectively. We expect this bias to allow for
better predictions of the facets (all of which exhibit MMI = 1)
considered in this work. We then extrapolated the total energy
of all metal adsorption sites on all surfaces for O* and OH*
(and OOH* when η < 0.75 V). Table 1 summarizes the scope of
our extrapolated database. In contrast to our interpolation
efforts, the size of the OC22 dataset for O* and OH* is only
0.1% of the predicted dataset in this work. Despite requiring
orders of magnitude less computational resources than a DFT
dataset of the same size, the estimated cost to produce our
dataset is still 9473.9 GPU-hrs (an average rate of one predic-
tion every 12.5 seconds), a significant amount of resources. By
making this database freely available to the scientific commu-
nity, users interested in performing similar high-throughput
screening exercise or fundamental analysis can do so without
the enormous cost in GPUs. The entire database including the
initial and relaxed structures and total energies can be
accessed through the University of Houston Dataverse
Repository.57 Details regarding the database metadata are
given in the ESI.†

For the 12922 surfaces exhibiting η < 0.75 V, we performed
an additional ML relaxation step without the application of
constraints on surface relaxation, adsorbate dissociation, and
desorption. While only 7% of OH* and 1% of O* intermediates
exhibited dissociation and desorption event, an overwhelming
number of events (50%) were associated with the OOH* inter-
mediates. Consequently, predictions of η exhibiting these
events could not be interpreted and were ignored in our final
assessment of overpotential. However, we emphasize that the
occurrence of dissociation and desorption does not disqualify
the possibility of these surfaces being catalytically active in
alternative reaction mechanisms such as the oxo-coupling
mechanism or lattice oxygen evolution reaction.46–50

3.2 High-throughput screening

Fig. 5 summarizes the selection criteria that we employed to
screen for candidate electrocatalysts for OER. The first criteria

Fig. 4 Scope of surface intermediates for OER calculated using DFT in
the OC22 dataset. Overlaps indicate the number of surfaces where
different intermediates (OH*, O*, or OOH*) are calculated for the same
surface.

Table 1 Summary of database scope

Predictions: 6068572

Materials: 4119

Ave. # slabs per material: 47

OH* O* OOH* *
1,972,166 667,266 3,237,238 191,902

Predictions w/o spring constraints

Predictions of η: 12922

Dissociation/desorption events
OH* O* OOH*
908 131 6296
Predictions of η w/o diss./des. events: 6468
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in our high-throughput screening framework was to determine
if a material exists in the original training dataset of OC22. As
previously demonstrated by Tran et al.,24 the OC22 framework is
capable of predicting the total DFT energies of slabs and surface
intermediates of oxides within a mean absolute error of 0.22 eV
for the 4119 materials that have been observed in the training
dataset. Our database will only interpolate the energies of slabs
and surface intermediates amongst these materials (for more
information, the reader is redirected to24).

The second criterion describes the Pourbaix stability, i.e.,
the electrochemical stability of a material in aqueous environ-
ment. Here, we can interpret Pourbaix stability under a bulk
regime (right side of Fig. 5). We quantify the Pourbaix stability
of the bulk using the Pourbaix decomposition energy (EPBX),
which is a function of the temperature (T ) applied potential
(U) and pH of the environment (at T = 80 °C, U = 1.8 V, and pH
= 1).27,28 Materials with EPBX = 0 eV per atom are stable under
such conditions while materials with EPBX > 0 eV per atom are
metastable with the likelihood of corrosion increasing with
EPBX. It was shown experimentally that metastable materials
with EPBX ≤ 0.2 eV per atom are less likely to dissolve or
corrode.58 However, materials with EPBX as high as 0.5 eV per
atom have also been shown to be stable, albeit with a degree of
surface passivation which can inhibit catalytic activity.27 We
allow any material with EPBX ≤ 0.5 eV per atom under the afore-
mentioned conditions (see Fig. 1a) to satisfy this criterion.
Due to the exclusive nature of EPBX, only 1853 of the original
4119 materials will satisfy this criterion.

We adapted our third selection criterion based on the selec-
tion criterion from the WhereWulff59 high-throughput screen-
ing workflow for oxide catalyst discovery. Here, we assess the
surface energy of every termination for each facet of each
material that is Pourbaix stable with eqn (1). From the surface
energy, we were able to construct the Wulff shape which indi-
cates the most prominent facets in an equilibrium crystal.
When considering which surfaces are stable and can poten-

tially facilitate OER, we only consider surfaces that appear on
the Wulff shape. Depending on the stoichiometry of the slab,
the surface energy can vary as a function of ΔμM. For simpli-
city, we will roughly assume a possible chemical potential
range of the metal M as − 5 < ΔμM < 0 eV when interpreting
surface energy. Wulff shapes containing negative surface ener-
gies are ignored as nonphysical solutions as this indicates the
surface is more stable than the bulk (which implies dis-
solution of the solid). The dissolution of the Wulff shape will
consequently lead to 314 additional materials being omitted
from our list of candidates, leaving us with 1539 materials
with 11918 stable surfaces on the Wulff shape.

In our fourth criterion, we assess the overpotential of each
candidate surface with eqn (5). We consider any material with
at least two facets on the Wulff shape exhibiting η < 0.75 V as
being potentially competitive with RuO2 and IrO2 in regards to
catalytic performance. We find that 101 materials (512 sur-
faces) from our previous 1539 materials will satisfy this
criterion.

The fifth criterion assesses the thermodynamic stability of
the candidate material via the energy above hull (Ehull) or the
formation energy of a material relative to the ground state.
Like with Pourbaix stability, materials with a calculated Ehull >
0 eV per atom are metastable with the likelihood of experi-
mental synthesizeability decreasing as Ehull increases.
Materials with a calculated Ehull ≤ 0.1 eV per atom have been
shown to have reasonable rates of demonstrated synthesis in
experiment.60 From our aforementioned 101 catalytically active
candidates, we identify 92 materials that are stable or metastable.

The final criterion assesses the material cost of each com-
pound in $ per kg. To satisfy this criteria, the cost of a com-
pound must be less than that of RuO2 or $18315 per kg (as of
March 20216–8). As a conservative estimate, we will also
assume a price variation of $9969 per kg (based on the lowest
and highest prices of Ru in the last 24 years) in the future and
as such, all materials must be less than $8346 per kg. We have
identified 81 materials and 66 distinct A–B–O chemical
systems from our 101 metastable materials that have satisfied
this criterion. A tabulated list of all candidates with the lowest
value of η, Ehull, EPBX, material cost, space group, and number
of facets with low overpotentials is give in Tables S1–S8.†

3.3 Overpotential assessment

Although our set of tiered screening criteria will provide the
most economically and industrially viable candidates with
respect to thermodynamic stability and material cost, we posit
that there is a wider range of materials that can have competi-
tive overpotentials necessary for OER when ignoring the cri-
teria listed above. Fig. 6(a) shows the 53 elements on the peri-
odic table considered in our database. The heatmap indicates
the number of materials containing an element that exhibits
at least 2 facets with η < 0.75 V. Oxide combinations containing
Cr, Mn, Co, Cu, Bi, Pb, Se, Tl, Ag, and Sb tend to form catalysts
that exhibit low overpotentials. Ag-based chemical systems
such as Ag–O,61 Ag–Bi–O,62 Ag–Cu–O,63 and Ag–Co–O64 have
been demonstrated as viable catalysts for OER in experimental

Fig. 5 Summary of the screening criteria considered in our high-
throughput screening framework. The possible number of candidates
that have satisfied each tier is listed on the right for bulk Pourbaix stable
materials and on the left when nanoscale stability is possible. The
second and third criteria can be further modified by changing the
environmental parameters (T, U, pH).
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settings. The common use of Ag has been attributed to the fact
that Ag has the highest electrical conductivity amongst all
metals, allowing it to easily facilitate the four electron charge
transfer process that takes place during OER.64 Although it is
not as common and cheap as the 3d transition metals, Ag is
still more reasonably priced than the other noble metals.
Furthermore, it has been shown that Ag-doping at 1% has
been enough to enhance charge transfer in OER,65 making Ag-
based oxides reasonably economical. Similarly, Mn-based
chemical systems are known to be promising catalysts for
OER. This is owed to the intrinsically high activity and number
of polymorphs for compounds of MnOx

66 which can be syner-
gistically improved when introducing other components such
as Fe,67 Ni,68 and Co.69 Antimonates (Sb-based oxides) have
been extensively studied in both computational10 and

experimental62,70–72 settings as promising low-cost anode cata-
lysts for OER owed to their low overpotential and high oper-
ational stability as a consequence of Sb–O p–d hybridisation.72

Mixed metal Co oxides are abundant in CO2+ cations that are
useful for OER. The large atomic difference between Co and
the larger metal in Co-based Perovskites can also lead to dis-
tortions in the structure that can better stabilize either the
CO2+ or CO3+ cation which can allow for tunable active sites.73

Non-noble chemical systems such as Fe–Ni,74 Cu–Fe,
Fe–Mn,75 Fe,76 Co–Mn,77 and Co–Cr78 based oxides have been
shown to exhibit competitive overpotentials in the experi-
mental literature despite their absence from our final set of
candidates. To account for this discrepancy, we predicted the
overpotentials for all Wulff shape facets of all 4119 materials.
We summarized the overpotential of each chemical system by
plotting the lowest overpotential and the number of facets
exhibiting η < 0.75 eV in Fig. 6(b) across all materials of the
same chemical system as a heat map. Upon further inspection,
Fe–Mn–O is shown to be relatively unstable in our dataset
(EPbx = 0.95 eV) despite having a competitive overpotential cor-
roborating with past experiments. However, this was explored
in the context of nanoparticle catalysts.75

We have demonstrated 380 chemical systems exhibiting
facets on the Wulff shape that are potentially active for OER
despite only 76 chemical systems (92 materials) (ignoring
material cost) appearing in our set of candidates due to the
bulk stability of many materials being inaccessible. Methods
for stabilizing bulk oxides such as nanoscale stability (e.g. in
the aforementioned case for Fe–Mn–O75), elemental doping,
and the introduction of oxygen vacancies have been demon-
strated to be effective means of improving stability.1 RuO2 for
example is known to have stability issues in aqueous environ-
ments despite being the benchmark for OER catalysts.
However doping with other metals such as Cr and Ti has been
shown to stabilize this material.11 With these methods of sta-
bilizing the catalyst material and accessing active surfaces, we
emphasize that the identification of viable catalysts should not
strictly be confined by the Pourbaix stability or even Ehull. As
an example, we will demonstrate how nanoscale stabilization
can potentially expand the material space available for OER to
access these materials.

3.4 Alternative screening frameworks

Table 2 shows the number of final candidates identified under
different reaction conditions and definitions of Pourbaix stabi-
lity. In this study we constructed a database of machine learn-
ing data and demonstrated how it can be used in a variety of
ways to screen for catalyst. First, we identified potential candi-
dates for OER by creating a screening framework based on
simple bulk thermodynamic (the energy above hull and
Pourbaix energy above hull) and surface stability arguments at
pH = 1, U = 1.8 V, and T = 80 °C (see j in Table 2). We can
easily modify our framework to reflect other reaction con-
ditions and criteria for Pourbaix stability as shown in Table 2.
For example, we can modify our framework by introducing an
additional layer of complexity to our definition of Pourbaix

Fig. 6 (a) Periodic table of elements considered in the database.
Colormap indicates the number of materials containing the element that
exhibit η < 0.75 V for at least two facets. (b) Grid map for each pair of
elements with colors indicating the lowest overpotential amongst all
facets on the Wulff shape containing this chemical system (bottom
right) and the number of facets on the Wulff shape across material with
the same chemical system that exhibit overpotentials less than 0.75 eV
(top left). Tick labels on the x- and y-axis are sorted from the cheapest
(Fe) to the most expensive (Rh) element.
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stability by analyzing the possibility of nanoscale stability
under acidic conditions for OER as demonstrated in Fig. 5
(right). Using our nanoscale stability diagrams (see Fig. 2), we
were able to identify 2778 Pourbaix stable materials with 886
stabilizing at the nanoscale regime (10 to 100 nm). From our
Wulff shape analysis of the 2778 Pourbaix stable materials, we
identified 18501 surfaces that appear on the Wulff of
2430 materials. We find that 816 of these surfaces (from
159 materials) also exhibit low overpotentials. From these 159
potentially active materials, 147 are metastable and 121 exhibit
a material cost less than RuO2. In total we have identified 121
candidates and 40 additional candidates that are potentially
commercially viable for OER when synthesized as nano-
particles (see k in Table 2).

Another example of how we can modify our screening
framework is by changing our criteria for surface stability. As
mentioned before, we only considered facets that appear on
the Wulff shape within a metal chemical potential between −
5 < ΔμM < 0 eV. The Wulff shape indicates the most statistically
likely facets to appear under equilibrium crystal growth con-
ditions. However, non-equilibrium conditions can potentially
force different types of facets to appear.79 We can account for
this in our screening framework by considering all facets as
viable surfaces for OER. With this simple assumption, we
identified 181 materials (120 and 61 in the bulk and nanoscale
regime respectively) that satisfy all criteria (see l in Table 2).
Among the A–B–O chemical systems identified as nanostable
is Fe–Mn–O which as mentioned previously, has been explored
as nanoparticle catalysts for OER.75

Other alternative screening frameworks can be explored by
simply adding or modifying existing criteria. As a simple
example, we can assess Pourbaix stability under different
temperature conditions. The operating temperatures for OER
are typically between 60 °C and 80 °C with higher tempera-
tures resulting in improved ionic conductivity and kinetics in
exchange for lower stability. Although our assessment assumes
an operating temperature of 80 °C, we can easily re-assess the
second criteria (for bulk stability) in our screening framework
at 60 °C instead which will yield 2 additional candidates
without considering nanoscale stability (a and b). When nano-

scale stability is considered however, lowering the temperature
from 80 °C to 60 °C will result in a loss of 10 (c) and 13 (d ) can-
didates with and without Wulff shape stability respectively.
The bulk Pourbaix formation energy of ground state poly-
morphs decreases at lower temperatures. This decreases the
likelihood for metastable polymorphs to become more stable
than the ground state at the nanoscale resulting in fewer nano-
stable candidates at lower temperatures.

We can also consider more complex and realistic reaction
conditions whereby candidates are assessed based on their
stability over a range of operating potentials. We adopted the
potential range of 1.2–2.0 V for OER for which a material must
remain stable (or metastable with EPBX ≤ 0.5 eV) as suggested
by Wang et al.9 (e–h at T = 60 °C and m–p at T = 80 °C). This
strict set of operating conditions unsurprisingly results in
fewer candidates when compared to a static potential operat-
ing condition of 1.8 V. The total number of candidates pre-
sented in this work however, still far exceeds the original set of
candidates identified by Wang et al.9 and subsequently pro-
posed by Gunasooriya and Nørskov.10 The OC22 framework is
trained on data calculated with the PBE-GGA functional
whereas the data presented by Wang et al.9 was obtained using
the more accurate SCAN functional80 with the addition of cor-
rection terms better suited for assessing stability under corros-
ive conditions. These considerations contributed to a more
realistic, albeit pessimistic, set of 11 Pourbaix stable and active
candidates subsequently found by Gunasooriya and Nørskov10

as oppose to the 99 bulk stable candidates identified at 80 °C
(m). In a future work, we hope to adapt these functionals and
corrections when assessing nanostable catalysts to provide a
more accurate expansion to the limited set of bulk stable can-
didates explored by the references herein.9,10

In total we have identified 190 candidates (122 bulk – and
68 nanostable) with 145 distinct chemical systems when con-
sidering all the different screening frameworks listed in
Table 2. In the next section, we will validate our findings by
comparing to past experimental and computational results as
well as our own DFT simulations. We hope this demonstration
regarding the ease and variability of how these frameworks
can be modified illustrates the utility of these machine learn-
ing databases. We highly encourage the scientific community
to use our database to explore further possibilities and alterna-
tive screening frameworks in the future.

3.5 DFT and literature validation

We used DFT to validate 85 values for Gibbs adsorption energy
corresponding to eqn (6)–(8) for 33 Pourbaix stable com-
pounds in our database. The MAE of the test set shown in
Fig. 7(a) is 0.42 which is larger than the MAE of 0.239 eV
obtained from the validation set in the original OC22 assess-
ment.24 We find no difference in the amount of error when
validating ML data points with (square) and without (circle)
desorption/dissociation event. However, ML values corres-
ponding to O* adsorption on Ag2SeO3 and Na2Se2O7 and
OOH* adsorption on Ag2SeO3 will underestimate ΔGads relative
to DFT. These data points exhibit better agreement with DFT

Table 2 The different screening frameworks assessed in this study with
varying reaction conditions and criteria for Pourbaix stability. All screen-
ing frameworks are assumed to occur under pH = 1. Superscript letters
are used to label each framework evaluated (see Tables S1–S8† for a list
of candidates that were identified in each framework). Numbers in par-
entheses correspond to conductive candidates with small band gaps
(Egap < 0.1 eV). Framework j and k correspond to the frameworks investi-
gated in Fig. 5

Temperature (°C) 60 60 80 80
Applied potential (V) 1.8 1.2 to 2.0 1.8 1.2 to 2.0

Bulk 122a 99e 120i 99m

Bulk/Wulff 83b 62f 81j 62n

Bulk/Wulff/nano 111c 83g 121k 84o

Bulk/nano 168d 129h 181l 129p
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when applying a spring constant constraint to prevent dis-
sociation/desorption events (transparent data points). This
implies that the model from OC22 may overestimate the ten-
dency for desorption/dissociation in some combinations of
intermediates and surface and could be a potential point of
improvement in future iterations of the model.

Next we assess the predictability of the ML inferred overpo-
tential (eqn (5)) using the predicted and calculated values of
ΔGads from Fig. 7(a). Fig. 7(b) once again plots the DFT calcu-
lated data points against the corresponding ML quantities.
The majority of data points sampled will lie within the MAE of
0.22 V, however overpotentials corresponding to KSnO2,
Na5ReO6, Ag2SeO3, and Na2Se2O7 will lie outside the MAE.
Ag2SeO3 and Na2Se2O7 will exhibit overpotentials closer to
parity with DFT when applying a spring constant constraint to
prevent the dissociation/desorption of O* and OOH* in
Ag2SeO3 and O* in Na2Se2O7 as shown in Fig. 7(a). Despite the
large deviation from MAE however, we find that most data
points with predicted low overpotentials will still exhibit low
overpotentials close to or less than 0.75 V using DFT with the
exception of KSnO2 and Na5ReO6.

From our DFT calculations, we were able to identify 6 data
points with overpotentials below the soft theoretical limit (ηTh
> 0.3 V) imposed by scaling relationships: Mn23FeO32, HgSeO4,
Na2Co2O3, Cd2PbO4, MnTlO3, and KBiO2. The Mn–Fe–O
chemical system is well explored in the literature with experi-
mental overpotentials as low as 0.47 V.75,81,82 Although no
studies have investigated ordered structures of Na–Co–O, the
doping of layered CoO2 with Na has resulted in overpotentials
as low as 0.24 V.83 Although we have predicted HgSeO4 and
Cd2PbO4 as having overpotentials less than ηTh, Pb, Cd, and
Hg are known to possess potential health risks84 and as such,
caution is advised for any further investigation of candidates
containing these elements. As far as we are aware, the Mn–Tl–
O and Bi–K–O chemical systems have yet to be explored in the
literature.

Lastly, we compared our predicted values of overpotential
to those obtained by Gunasooriya and Nørskov10 for various
facets of 11 materials in Fig. 7(b). The majority of our pre-
dicted datapoints lie within a MAE of 0.38 V. ML data points
tend to underestimate the DFT values. However, those that lie
well beyond 0.38 V, such as IrO2, Ni(SbO3)2, TiSnO4, Sn(WO4)2,
Sn(WO4)2, FeSbO4 will again exhibit overpotentials much
closer to parity with DFT when applying a spring constant con-
straint to prevent the dissociation/desorption. A key difference
in the methods used to obtained both datasets is that the sur-
faces observed by Gunasooriya and Nørskov10 can be covered
completely by O* or OH* whereas all surfaces considered in
this study only considered the adsorption of a single O* or
OH* intermediate at a time. Despite this, we still find many
data points terminated by O* or OH* within the MAE.

Tables S9–S14† lists all 190 candidate materials we have
identified in this work along with references to the experi-
mental literature where available and the PDS of the surface
with the lowest overpotential. In total, we have identified 102
out of 145 unique chemical systems (127 out of 190 materials)
that have yet to be explored with 77 non-toxic (does not contain
Pb, Cd, Hg, or Cr) chemical systems (98 materials). Although
not considered in our study, conductivity is also required for the
operation of electrocatalysts.9 Of these 98 non-toxic and unex-
plored candidates, 27 have a band gap of less than 0.1 eV
according to the Materials Project30 which satisfies this
additional criteria. These conductive candidates are: Cu3
(SbO3)4, Ba8(Bi2O7)3, BaBiO3, Cu3Mo2O9, Mg(BiO3)2, CuMoO4, Li
(Bi3O5)4, Ce2Mo4O15, Ce9YO20, AgSnO3, Ce2 (GeO3)3, Ag4GeO4,
MnTlO3, LuCoO3, BaMn2O3, Li(CuO)2, MnBiO3, Mn2BeO4,
VZn2O4, ScMn2O4, LiMn3O4, Mn3NiO4, Mn2NiO3, VSbO4,
Ag3RuO4, TiCu3O4, and TlCuO2. The other 71 candidates,
although non-conducting, can potentially be considered as
anodes in photocatalytic mechanisms for OER. The discovery of
a potential candidate for OER demonstrates the potential of ML-
assisted screening techniques in identifying novel catalysts.

Fig. 7 (a) DFT calculated data points for reaction energy plotted against the corresponding ML predicted quantities. (b) DFT calculated data points
for overpotential plotted against the corresponding ML predicted quantities. Overpotentials of the benchmark materials are highlighted in blue (IrO2

and RuO2). Overpotentials of less than 0.75 eV are considered catalytically active. Square data points indicate desorption or dissociation of the inter-
mediate. Transparent data points correspond to ML predicted data points with spring constraints applied to prevent desorption and dissociation
events.
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4 Conclusions

In this contribution, we employed pre-trained machine learn-
ing potentials from the Open Catalyst Project to develop a pub-
licly available database of O*, OH*, and OOH* surface inter-
mediates for 4119 oxide materials. We demonstrated the utility
and variability of this database by presenting several easily
implemented high-throughput screening frameworks for iden-
tifying thermodynamically stable and catalytically active (low
overpotential) materials for the oxygen evolution reaction from
our initial pool of 4119 candidates. Our first screening frame-
work identified 81 candidates that are Pourbaix stable in the
bulk regime with catalytic surfaces that appear on the Wulff
shape. By slightly modifying this framework to account for the
possibility of nanoscale stability, we identified 121 additional
candidates. Additional modifications to the reaction con-
ditions and our definition of Pourbaix stability yields a total of
190 candidates with 27 unexplored candidates fulfilling
additional criteria of being non-toxic and conductive.
Furthermore, we were able to validate our predictions with
DFT calculations from the literature as well as our own. When
ignoring material cost and bulk stability, we find that oxides
containing Cr, Mn, Co, Cu, Se, Sb, Bi, Pb, and Tl tend to
exhibit overpotentials that are possibly competitive with
current benchmark materials (IrO2 and RuO2). We plan to
further expand our database to include other potential reac-
tion mechanisms for OER such as the oxo-coupling mecha-
nism and lattice oxygen evolution. We hope this database will
encourage future investigators to develop their own high-
throughput screening frameworks.
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