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ABSTRACT: The development of machine learning models for electrocatalysts requires a broad set of training data to enable their
use across a wide variety of materials. One class of materials that currently lacks sufficient training data is oxides, which are critical for
the development of Oxygen Evolution Reaction (OER) catalysts. To address this, we developed the Open Catalyst 2022 (OC22)
dataset, consisting of 62,331 Density Functional Theory (DFT) relaxations (∼9,854,504 single point calculations) across a range of
oxide materials, coverages, and adsorbates. We define generalized total energy tasks that enable property prediction beyond
adsorption energies; we test baseline performance of several graph neural networks; and we provide predefined dataset splits to
establish clear benchmarks for future efforts. In the most general task, GemNet-OC sees a ∼36% improvement in energy predictions
when combining the chemically dissimilar Open Catalyst 2020 Data set (OC20) and OC22 datasets via fine-tuning. Similarly, we
achieved a ∼19% improvement in total energy predictions on OC20 and a ∼9% improvement in force predictions in OC22 when
using joint training. We demonstrate the practical utility of a top performing model by capturing literature adsorption energies and
important OER scaling relationships. We expect OC22 to provide an important benchmark for models seeking to incorporate
intricate long-range electrostatic and magnetic interactions in oxide surfaces. Data set and baseline models are open sourced, and a
public leaderboard is available to encourage continued community developments on the total energy tasks and data.
KEYWORDS: catalysis, oxides, renewable energy, datasets, machine learning, graph convolutions, force field

■ INTRODUCTION
Advances are needed in technologies to produce, store, and use
low-carbon-intensity energy. Renewable energy is often
produced by intermittent sources (e.g., sunlight, wind, or
tides), so efficient grid-scale storage is required to transfer
power from times of excess generation to times of excess
demand. There are a number of promising storage techniques
including the conversion of renewable energy to a chemical
form, e.g. water splitting to H2, or CO2 conversion to liquid
fuels and high-value chemical feedstock. Inorganic oxides are

abundant electrocatalysts that are extensively used in these
applications. However, the complex nature of oxide surfaces
compared to simpler metals present a number of challenges to
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catalyst design. Developing generalizable machine learning
methods to quickly and accurately predict the activity and
stability of oxide catalysts would have a major impact on
renewable energy storage and utilization.
As a motivating example of the need and challenges for

oxide electrocatalysts, we consider water splitting for the
generation of clean H2; an energy-dense fuel that is used in fuel
cells or ammonia synthesis. Electrochemical water splitting
consists of two coupled half-reactions

which split two water molecules to evolve H2 and O2 gas. This
process is extremely energy intensive. The OER overpotential
is the larger contributor to the inefficiency of this reaction; it is
quite complicated due to bond rearrangements and the
formation of an O−O bond. Water splitting typically uses
very harsh acidic conditions to reduce gas solubility and
improve proton conductivity, and for which high performance
proton exchange membranes are widely available. Unfortu-
nately, for these conditions there are very few known materials
that are stable and active, except extremely expensive metal
oxides, such as those using Ir.1 Currently, there are significant
efforts to design complex multicomponent oxide OER catalysts
to reduce the cost and improve their activity and stability.2,3

Computational chemistry can play a critical role in helping
screen, discover, and understand such materials.
Computational methods can be used to predict the activity

and stability of a proposed oxide catalyst, but these techniques
are significantly more complicated than for metal catalysts and
present many additional challenges. First, there are many oxide
polymorphs (crystal structures) for any given chemical
composition that must be considered to identify the most
stable catalyst structure.4 Second, the surface of an oxide
catalyst is often prone to reconstruction, leaching, doping, and
defects.5 Third, the environment can lead to a number of
possible surface terminations. Fourth, it is difficult to
determine a catalyst’s active site and there are often multiple
competing mechanisms to consider.6 To add to these
challenges, computational chemistry methods such as the

widely used Generalized Gradient Approximation (GGA) are
less accurate for oxide materials due to the strong electron
correlation and complicated electronic structure. Large system
sizes and the likelihood of long-range electrostatic or magnetic
interactions also result in slower convergence. These additional
configurational and computational complexities make the
creation of datasets and machine learning models for oxides
significantly more expensive and challenging, leading to much
fewer and smaller datasets than for metal systems (see7 for a
sample of representative datasets in catalysis).
We address these challenges by generating a large oxide

dataset to accelerate the development of machine learning
(ML) models for materials design and discovery. The training
of accurate and generalizable ML models requires large
datasets. For example, the OC20 dataset8 (ca. 250 million
single-point calculations) considered different adsorbates
(small adsorbates, C1/C2 compounds, and N/O-containing
intermediates) on top of randomly sampled low Miller index
facets of stable materials from the Materials Project,9 but did
not include metal oxide materials due to the complexities
above. The release of the OC20 dataset helped enable rapid
advances in the accuracy and generalizability of Graph Neural
Network (GNN) models,10 with decreases of 55+% in the key
S2EF metrics in the first two years. Initial baseline models like
CGCNN11 and SchNet12 focused on local environment
representations. Key advances since then include invariant
angular interactions (DimeNet/DimeNet++13,14), faster and
more accurate but nonenergy conserving models (ForceNet15

and SpinConv16), and triple/quadruplet interactions (Gem-
Net-dT,17 GemNet-XL,18 and GemNet-OC19). Other ap-
proaches include the use of transformers (3D-Graphormer20)
and more effective augmentation and learning strategies
(Noisy-Nodes21). These and further advances are necessary
to accurately predict properties of complex structures such as
oxide systems.
In this work, we present the Open Catalyst 2022 (OC22)

dataset (Figure 1) for the oxygen evolution reaction and oxide
electrocatalysts more generally, as well as accompanying tasks
and GNN baseline models. OC22 is intended to complement
OC20, which did not contain any oxide materials, and further

Figure 1. Overview of the contents and impact areas of the OC22 dataset. The water nucleophilic attack mechanism is highlighted for the OER
reaction, with H2O and O2 as reactants and products, respectively. Inset images are a random sample of the dataset.
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enable the development of generalizable ML models for
catalysis. This dataset spans the configurational complexity for
oxide surfaces described above, including varying surface
terminations, adsorbate+slab configurations and coverage, and
nonstoichiometric substitutions and vacancies. To encompass
the additional complexities in this dataset, we also expand on
the primary tasks in OC20 to include the DFT total energy as a
target. A more general property, DFT total energy offers the
ability to address potential applications beyond those that just
require simple adsorption energies.
With the creation of new datasets, the question arises of

whether the data in them is complementary to other datasets
for training ML models (see recent reviews for a perspective of
catalysts informatics22−24). This is especially important when
consolidating data with a variety of computational methods in
anthological dataset collections such as the Catalysis-Hub,25

Catalyst Acquisition by Data Science,26 and the NFDI4Cat
consortium.27 For instance, models can be trained jointly using
multiple datasets, or transfer learning may be used to train a
model on a larger dataset and fine-tuned on a smaller dataset.
Recently, the OC20 dataset enabled the catalysis community
to use transfer learning to improve model performance28 on
other smaller datasets. The small molecules and drug discovery
communities have seen success in using transfer learning to
transfer between varying levels of electronic structure
calculations29 or between related tasks.30−32 In this work, we
explore the extent OC20 can aid OC22 via transfer learning or
by jointly training on both datasets.
We train a variety of leading GNN models on two related

proposed community challenges for OC22: (1) predict the
DFT total energy and force for a given structure and (2)
predict the DFT relaxed total energy given an initial structure.
We also evaluate our models’ performance on the established
task of predicting the relaxed structure given an initial
structure. The dataset is split into train/validation/test splits
indicative of the situation commonly found in catalysis where
the properties of unseen crystal compositions need to be
predicted. Splits contain a combination of isolated surfaces
(a.k.a slab) and surface with adsorbate (a.k.a adsorbate+slab)
systems. All baseline models, data loaders and training scripts
for each of these tasks are available at https://github.com/
Open-Catalyst-Project/ocp. While we focus on a subset of
tasks, models capable of solving these tasks on the OC22
dataset will likely be able to address numerous related catalysis
problems.
The OC22 Dataset. OC22 is designed to provide a training

dataset for constructing generalized models to aid in predicting
catalytic reactions on oxide surfaces. To achieve this, we built
the dataset in four stages: (1) bulk selection, (2) surface
selection, (3) initial structure generation, and (4) structure
relaxation. The dataset contains slabs and adsorbate+slabs,
19,142 and 43,189 systems, respectively. This resulted in
9,854,504 single-point calculations, each of which yielded
forces and energies that were later partitioned into suitable
train, validation, and test validation splits. We prioritized
diversity in composition, surface termination, and adsorbate
configurations in constructing our dataset to ensure that our
models can generalize well. As a result of our emphasis on
creating an unbiased and diverse dataset, OC22 structures may
not always be the most stable or pertinent for a particular
reaction pathway of interest�data still meaningful for building
generalizable models. All source code used to generate the
adsorbate configurations will be provided in the Open Catalyst

Data set repository at https://github.com/Open-Catalyst-
Project/Open-Catalyst-Dataset.
Bulk Selection. We begin by confining our set of bulk

oxide materials to 4,728 unary (AxOy) and binary (AxByOz)
metal-oxides from the Materials Project9 where A and B are
metals. These oxides can be composed of any combination of
metals or semimetals listed in the Supporting Information (SI).
In our list of 51 metals, Ce and Lu were the only lanthanides
considered due to the utility of cerium-based oxide compounds
in catalytic reactions33,34 and to add additional variety with
lutetium-based oxides. For each chemical system, we
considered bulk materials with the top five lowest energies
above hull with less than 150 atoms to provide equal chemical
distribution and diversity in our set of oxides. We note that
under this criteria, some materials may exhibit an energy above
hull exceeding 0.1 eV/atom (the threshold initially used in
OC20). In addition to chemical diversity, we also included
materials with a variety of electronic band gaps (EG). Table 1

lists the number of metallic (EG = 0 eV), semiconducting (0 eV
< EG < 3.2 eV), and insulating (EG > 3.2 eV) materials
considered in our dataset (all electronic properties were
derived from the Materials Project). Many oxides such as TiO2
are also useful for photocatalysis which typically requires
semiconducting properties to allow for photoelectron

Table 1. Overview of the Chemical, Structural, and
Adsorbate Composition of the Entire Dataset of Slabs and
Adsorbate+Slabs

Chemical formula
Unary (AxOy) 6,190
Binary (AxByOz) 56,141

Elements sampled
Alkali 13,541
Alkaline 13, 974
p-block metals 14,029
Metalloids 8,292
Transition metals 48,561

Crystal structures
Triclinic 6,214
Monoclinic 16,294
Orthorhombic 7,258
Tetragonal (Rutile) 11,550 (4,318)
Trigonal 4,411
Hexagonal 2,680
Cubic 9,606

Band gaps
EG = 0 eV 1,366
0 eV < EG < 3.2 eV 2,591
EG > 3.2 eV 598

Adsorbates
O 10,816
H 5,298
N 4,000
C 3,905
OH 4,092
OOH 4,424
H2O 4,846
CO 3,994
O2 1,814

Calc. with PBE+U: 20,812
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excitation. We also considered 173 unary and binary rutile
structures.
Our selection criteria for bulk oxides prioritized chemical

diversity over stability. We acknowledge that many of the
materials we selected are not electrochemically stable which is
a prerequisite for viable electrocatalytic materials. Pourbaix
analysis have previously demonstrated that only oxides
composed of 26 of the 51 elements we considered are
relatively stable under aqueous conditions.35

We also ignored the fact that certain chemical systems have a
far greater set of distinct bulk structures than others. For
instance, the Materials Project database has reported over 300
entries for chemical systems such as Ti−O and Mn−Li−O
while no entries were reported for 200 chemical systems (see
the SI). Other databases such as the Automatic-Flow36 and
Open Quantum Materials Database37 have also made
significant efforts in exploring oxides and contain chemical
systems unexplored in the Materials Project. However, to
ensure all oxides were obtained using a consistent method-
ology and open source licensing, we extracted entries from the
Materials Project only.
Surface Selection. We constructed our dataset by first

randomly sampling 4,286 bulk oxides from our original bulk
oxide set of 4,728. We limited our dataset to slabs of less than
250 atoms. We construct each slab and adsorbate+slab using
the process shown in Figure 2. Given a random oxide selected

from our bulk dataset, we enumerate through all possible
surface terminations with a maximum Miller index less than or
equal to 3. As with Figure 2a all slabs are capped with the same
terminating surface regardless of stoichiometry. We randomly
select one termination which we replicated to a depth of at
least 8 Å and a width in each cross-sectional direction of at
least 8 Å.
Next we decorated the surface of the slab with a random

number of oxygen vacancies which can act as active sites for
reactions such as CO2 capture

38 and OER.39,40 To do so, we
first identify all existing oxygen lattice sites on the surface as
with Figure 2b. We then select a random number of surface
oxygen to remove ranging from 0 (no vacancies) to all surface
oxygen. We do the same on the other surface to maintain
surface symmetry and avoid the manifestation of nonphysical
dipole moments which can lead to diverging DFT energies.

The SI provides the chemical space distribution of all slabs
and adsorbate+slabs successfully calculated in the dataset.
Table 1 summarizes the distribution of elemental composition,
crystal structures, bulk band gap, and number of components
of the entire dataset of slabs and adsorbate+slabs.
Initial Structure Generation. To construct our adsorbate

+slab, we first randomly sample one adsorbate from the set
shown in Figure 3. This adsorbate set includes O*, OH*,
OH2*, OOH*, and O2* which are the intermediates in the
proposed reaction mechanisms of OER. To expand the
possible chemistry of adsorbates on oxides beyond OER, we
also included monatomic H*, O*, N*, and C*, as well as CO*.
Table 1 shows the distribution of the 9 sampled adsorbates
across the dataset.
We then determine the coverage of our random adsorbate

on our randomly constructed slab. In contrast to the OC20
dataset, here we allow for more than one adsorbate of the same
type to bind to the surface. The adsorbate can bind to three
types of sites: the surface oxygen, the under-coordinated
surface metal, or an oxygen vacancy. The maximum number of
adsorbates allowed on the surface is limited by the sum of
these three types of sites. However, we also ensure that all
adsorbates are always separated by a distance greater than the
M−O bond of the host material to avoid adsorbate
overcrowding.
In this effort, we implemented specific strategies for placing

adsorbates on the aforementioned surface sites as shown in
Figure 3. The first row of placement strategies demonstrates
that all adsorbates are able to bind to any undercoordinated
surface metal at the lattice position of oxygen. This includes
lattice positions of vacancies introduced during slab gener-
ation. An adsorbate containing oxygen will always bind to the
metal via the oxygen atom as shown for OH*, O2*, CO*,
H2O* and OOH*. We also considered intermediates that arise
due to formation of oxygen dimers which play a role in one of
the possible mechanisms of OER.6,41 In this configuration, a
pair of monatomic oxygen atoms can adsorb on to adjacent
undercoordinated metals to form a dimer of 1.68 Å which is
longer than the bond length of O2*.
The second row demonstrates how specific molecules that

are able to form new molecules with the addition of oxygen
can also bind to existing surface oxygen. For example, binding
to a surface oxygen with the monatomic adsorbates will form a
dimer molecule whereas CO* and OH* can bind to form
CO2* and OOH* respectively. Incorporating these reactions
in the dataset will allow for the exploration of intermediate
surface reactions that are only possible on oxides.
Lastly, we also allowed for a 4-fold rotational degree of

freedom about the normal of the surface for all adsorbates. We
randomly select the degree of rotation for each adsorbate on
the surface after identifying the adsorbate sites.
Structure Relaxation. The OC22 dataset uses different

computational settings than those used for the OC20 dataset.
The OC22 dataset models the exchange-correlation effects
with the Perdew−Burke−Ernzerhof (PBE), generalized
gradient approximation (GGA)42 which is generally accepted
for modeling surface reactions on oxides.6,43,44 In contrast, the
OC20 dataset utilizes the RPBE DFT functional. We also
accounted for strong electron correlations in some transition
metal oxides by applying the Hubbard U correction in
accordance to the suggestions made by the Materials Project.9

The last row of Table 1 shows the total number of slabs and
adsorbate+slabs calculated using Hubbard U corrections.

Figure 2. Construction of rutile (110) slabs and adsorbate+slabs. (a)
Dashed lines indicate the different possible terminations (T1, T2, and
T3). The slab is symmetric about T3. (b) The T2 terminated surface
with its periodic boundary (blue dashed lines) contains 8 oxygen sites.
Random removal of 3 surface oxygen (dark red) creates vacancy
defects (transparent).
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Although higher-level theory single-point calculations (e.g.,
hybrid functionals45) are often used to verify the final
electronic structure and energy of a surface, they still use a
scheme similar to the one here to obtain the optimized
structure. Models developed for this dataset will greatly
accelerate more accurate workflows by focusing expensive
calculations on the most stable and relevant structures.
In contrast to the OC20 dataset, all calculations were

performed with spin-polarization to account for the significant
spin states in metal oxides. Although some oxide materials
exhibit magnetic polymorphism, we only considered one
polymorph for each slab with all slabs being initialized with
ferromagnetic or nonmagnetic configurations in accordance to
the magnetic moments of each metal suggested by Horton et
al.46 These different magnetic states for a single crystal
structure can significantly change thermodynamic properties at
the surface. For example, rutile VO2 has been demonstrated to
have several different spin states with nonmagnetic surfaces
yielding significantly lower surface energies than ferromagnetic
surfaces for the same slab.47 For further details regarding the
computational settings, we refer the reader to the SI.
We allowed all atoms of the slab and adsorbate+slab to be

relaxed. This will not only yield a lower DFT energy, but also
allows for more accurate calculations of the surface energy by
ensuring both surfaces are relaxed. This is in contrast to the
OC20 dataset where only the adsorbates and the surface atoms
were relaxed.
Systems that did not converge ionically were set aside for

use in alternative tasks. All intermediate structures, energies,
and forces are stored for future training and evaluation. The
algorithms implemented to produce all input slabs and
adsorbate+slabs were constructed with the aid of Python
Materials Genomics (pymatgen)48 and are available in the
Open Catalyst Data set repository (https://github.com/Open-
Catalyst-Project/Open-Catalyst-Dataset/tree/OC22_dataset).
All calculations are performed using the Vienna ab initio
simulation package (VASP) .49−53 In total, we used over 240
million core-hours to create this dataset.

■ TASKS
The goal of the OC22 dataset is to efficiently simulate atomic
systems with practical relevance to OER and other oxide
applications. One approach to screening materials relies on
simple descriptors such as adsorption energy and surface
energy. These descriptors alongside the Sabatier principle54

and surface Pourbaix diagrams55 can be used to correlate with
more complex outputs like activity and selectivity. Unfortu-
nately, the primary bottleneck to doing so are computationally
expensive DFT calculations. Calculations are further exacer-
bated for OC22 as its systems are larger and more complex
than that of OC20. Again, we focus on structure relaxations as
they have been a useful means to informing catalyst activity for
a broad range of applications.56−61 Models developed for
OC20 have shown great progress on their proposed
tasks.10,15−17,19,20 In all of the OC20 tasks, energies were
referenced to represent adsorption energy. While advantageous
for screening purposes, this referencing, however, implicitly
limited models to only studying adsorbate+slab combinations
and not any one in isolation. In the context of OER, this is
especially problematic as typical discovery pipelines require
exploring different coverages and configurations of the
surface.4,35,62−66 Figure 4 illustrates a typical workflow for
OER where studying different surface terminations are
necessary before running an adsorption calculation. Here, we
propose modified variations of the OC20 tasks that would
enable models to study surfaces with and without the presence
of an adsorbate.
In all tasks, structures can contain a surface and adsorbate

combination or just an isolated surface (a.k.a slab). The surface
is defined by a unit cell periodic in all directions with a vacuum
layer at least 12 Å. All ground truth targets are computed using
DFT.
We briefly summarize the OC20 tasks below. For all tasks,

energy is referenced to correspond to adsorption energy. See
the original OC20 manuscript for more details.8 Structure to
Energy and Forces (S2EF) takes a given structure and
predicts the energy and per-atom forces. Initial Structure to
Relaxed Energy (IS2RE) takes an initial structure and predicts
the relaxed energy. Initial Structure to Relaxed Structure

Figure 3. Overview of the adsorbate specific placement strategies. Adsorbates include H*, O*, N*, C*, OOH*, OH*, OH2*, O2*, and CO* (left).
Adsorbates can either bind to undercoordinated surface metals (first row of strategies) or to surface oxygen to form new intermediates (second
row).
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(IS2RS) takes an initial structure and predicts the relaxed
structure. The size of the train and validation splits for each
task is listed in Table 2.
In the curation of both OC20 and OC22, slabs and

adsorbate+slabs were relaxed in parallel, with adsorbates being
placed on unrelaxed slabs. OC20 makes an assumption in
computing an adsorption energy such that the corresponding
relaxed slab reference is comparable to that of the adsorbate
+slab combination. This assumption was feasible given that the
majority of the surface was constrained.
Unlike OC20 where surface atoms are constrained, all atoms

in OC22 are unconstrained. While this enables the community
to study other surface properties like surface energy, the
assumption that the relaxed clean surface and adsorbate+slab
surface are comparable no longer holds. Computing an
adsorption energy in the same manner of OC20 would
correspond to an incorrect reference, resulting in an ill-posed,
noisy target (see SI for more details). Instead, we modify the
OC20 S2EF and IS2RE tasks to target DFT total energy rather
than adsorption energy. We use the IS2RS task as is with no
modifications.
Structure to Total Energy and Forces (S2EF-Total) takes a

given structure and predicts the DFT total energy and per-
atoms forces. Compared to S2EF, S2EF-Total differs only in its
energy prediction. S2EF takes the DFT total energy and

references it by subtracting off a clean surface and gas phase
adsorbate energy. S2EF-Total is only interested in the DFT
total energy. The two tasks are related as follows:

E E E ES EF S EF Total slab
DFT

gas
DFT

2 2= (1)

Initial Structure to Total Relaxed Energy (IS2RE-Total)
takes a given structure and predicts the relaxed DFT total
energy. Similar to S2EF-Total, IS2RE-Total is related to IS2RE
as follows:

E E E EIS RE IS RE Total slab
DFT

gas
DFT

2 2= (2)

DFT total energies are not meaningful on their own.
Physically relevant properties like adsorption energy include
some reference. A model that can predict a DFT total energy,
however, gives the flexibility to reference to whatever is
desired. Adsorption energy in this context would involve two
predictions�one of the adsorbate+slab and one of the clean
surface. For OER this is particularly important to identify the
most stable surface coverage (or termination). While this
problem is also important for OC20, those systems were much
less complicated and the proposed adsorption energy tasks are
typically sufficient.
Of the proposed tasks, S2EF-Total is the most general and

closest to a DFT surrogate. Models trained for this task would
enable researchers to study properties derived from isolated
surfaces such as surface stability with respect to the bulk energy
(surface energy), a necessary and important step in the catalyst
discovery pipeline. Total energies also allows us to leverage
surface trajectories and their energies for training, data that was
previously unusable in OC20 using the specified bare slab
energy reference.

■ BASELINE GNN MODELS
A wide range of models for catalyst and molecular applications
have been proposed.15−21,67 We evaluate our tasks using the
latest state of the art models. Additionally, we baseline
alternative model architectures including equivariant and
(non)energy-conserving models. Code for all baseline models
are implemented in PyTorch68 and PyTorch Geometric,69 and
are publicly available in our open source repository at https://
github.com/Open-Catalyst-Project/ocp.
Graph Neural Networks (GNNs) have continued to grow in

popularity as an efficient and accurate architecture for
modeling atomic interactions. Unlike descriptor based
models,70−73 where hand crafted representations are used to
describe atomic environments, GNNs learn atomic representa-
tions through several message passing steps.74 Consistent with
related work,8,12,13 graphs are constructed with atoms treated
as nodes and interactions between atoms as edges. Periodic
boundary conditions are accounted for in graph construction

Figure 4. A typical OER workflow, motivating the need for total
energy models beyond adsorption energies. Total energy models
would allow one to study all parts of this workflow, and not just the
final relaxation like adsorption energy models. (a) A bulk structure is
selected from material datasets and a surface is created. (b) Surface
terminations are enumerated and studied with DFT to identify the
most stable termination. Surface Pourbaix diagrams are created and
used to make this decision. (c) Only after the most stable termination
is identified, an adsorbate is placed. (d) The adsorbate+slab system is
relaxed and the referenced adsorption energy is computed.

Table 2. Size of Train and Validation Splitsa

Train ID OOD

Task Adslabs Slabs Total Adslabs Slabs Total Adslabs Slabs Total

S2EF-Total 6,642,168 1,583,125 8,225,293 313,238 81,489 394,727 356,633 94,036 450,669
IS2RE-Total 31,244 14,646 45,890 1,701 923 2,624 1,862 918 2,780
IS2RS 31,244 14,646 45,890 1,701 923 2,624 1,862 918 2,780

aS2EF-Total structures come from a superset of IS2RE-Total systems, including unrelaxed systems (e.g. 50,810 train systems). Splits are sampled
based on catalyst composition, ID for those from the same distribution as training, OOD for unseen catalyst compositions. Splits consist of both
adsorbate+slab (adslabs) and slab systems. Validation and test splits are similar in size with exclusive compositions.
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consistent with OC20. A cutoff radius is introduced for
computational tractability.
We benchmark GNNs that have either performed well on

OC20 or other molecular datasets. For S2EF-Total, we
benchmark a larger sample of models including SchNet,12

DimeNet++,14 ForceNet,15 SpinConv,16 PaiNN,75 GemNet-
dT,17 and GemNet-OC.19 IS2RS baselines are limited to the
top performing models - SpinConv, GemNet-dT, and
GemNet-OC. IS2RE-Total baselines include SchNet, PaiNN,
DimeNet++, and GemNet-dT. Top performing S2EF-Total
models were also evaluated for IS2RE-Total via an iterative
relaxations approach.8

SchNet and DimeNet++ proposed continuous edge filters
and directional message passing, respectively. ForceNet and
SpinConv proposed architectures with direct force predictions
in place of using energy derivatives with respect to atomic
positions. PaiNN is an equivariant model with spherical
harmonics up to order l = 1. We modify PaiNN’s original
architecture to make direct force predictions as our experi-
ments showed a boost in performance. GemNet-dT incorpo-
rates symmetric message passing, scaling factors, equivariant
predictions, and several efficient architecture improvements
over the similar DimeNet++. GemNet-OC expands on
GemNet-dT to efficiently capture quadruplet interactions,
the current state of the art model across all tasks for OC20.
Unless otherwise noted, graph edges were computed on-the-

fly via a nearest neighbor search for a cutoff radius of 6 Å and a
maximum of 50 neighbors per atom. GemNet-OC uses
different cutoffs for the type of interaction, e.g. triplets and
quadruplets. Initial model sizes were taken directly from
corresponding OC20 configurations. To accommodate for the
fact OC22 has 16× less data, a light hyperparameter sweep was
done for all models, with particular emphasis on learning rates,
schedulers, and batch sizes. Effective batch sizes were set to
∼192−256 for S2EF and ∼4−64 for IS2RE. S2EF models used
identical learning rate schedulers to more fairly compare
baselines, decaying the learning rate at epochs 2, 3, 4, 5, and 6.
IS2RE used a reduce on plateau learning rate scheduler. Full
details on model hyperparameters and training configurations
can be found in the SI.
All experiments used the following loss function8 to balance

energy and force predictions:

E E
N

F F1
3E

i
i i

DFT
F

i j i
ij ij

DFT p

,

= | | + | |
(3)

where λE and λF are empirical parameters, Ei is the energy of
system i, Fij is the force on the jth atom in system i, Ni is the
number of atoms in system i, and p is the norm order. With the
exception of GemNet-dT and GemNet-OC which used p = 2,
all S2EF-Total models used p = 1. For IS2RE-Total only the
energy term is evaluated, i.e λF = 0. Baseline S2EF-Total
models were trained with λE = 1 and λF = Natoms

2 to ensure size
invaraince, as detailed by Batzner et al.76,77

■ EVALUATION METRICS
All our tasks use the same evaluation metrics proposed by
OC20. The only difference is rather than ground truth values
being DFT adsorption energies, we use DFT total energies for
OC22. We briefly mention the metrics below but refer readers
to the OC20 manuscript8 for a more detailed description.
S2EF-Total. The S2EF-Total task uses the same metrics as

the OC20 S2EF task. Metrics include Energy Mean Absolute

Error (MAE), Force MAE, Force cosine, and Energy and
Forces within Threshold (EFwT). Ground truth targets
correspond to DFT total energy and per-atom forces.
IS2RE-Total. Similarly, IS2RE-Total uses the same metrics

as the OC20 IS2RE task. Metrics include Energy MAE and
Energy within Threshold (EwT). Ground truth targets
correspond to the DFT total energy of the relaxed structure.
IS2RS. IS2RS metrics here are identical to that of OC20.

Metrics include Average Distance within Threshold (ADwT),
Force below Threshold (FbT), and Average Force below
Threshold (AFbT). Ground truth targets are the relaxed
structure. DFT is also used to evaluate predicted relaxed
structures.
Consistent with OC20, our evaluation metrics still focus on

accuracy. Given the complexity of OC22, we are interested in
how previously successful models will perform on larger more
intricate systems. In addition, we focus on models that are
significantly faster than traditional DFT-based techniques.
Models that can calculate energy and force estimates in under
10 ms would significantly aid oxide-related research.

■ ML EXPERIMENTS
The availability of large, diverse datasets like OC20 allows us
to explore more interesting experiments alongside the OC22
dataset. In addition to training our baseline models on just
OC22, we examine the extent the OC20 dataset and its
pretrained models can benefit OC22 performance, and vice
versa.
The varied training strategies are summarized in Figure 5.

For each task we first study the performance using baseline

models just trained on OC22 (OC22-only). This is the
standard strategy when introducing a new dataset. Next, we
leverage both OC20 and OC22 via joint training
(OC20+OC22). In joint training we train a combined dataset
of OC20 and OC22 systems. For S2EF-Total, we explore
combined datasets with different sizes of OC20−2M, 20M,
and All. While the OC20 energies were originally expressed as
adsorption energy, for these experiments we use the DFT total
energy which is also publicly accessible. One of the limitations
to joint training is the need to train on a larger combined

Figure 5. Various training strategies explored in OC22. A. The
OC22-only strategy involves just using OC22 for the proposed tasks.
B. Joint training refers to models trained on both OC20 and OC22
simultaneously. C. In fine-tuning, pretrained models for OC20 are
used as starting points to train on just OC22.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c05426
ACS Catal. 2023, 13, 3066−3084

3072

https://pubs.acs.org/doi/suppl/10.1021/acscatal.2c05426/suppl_file/cs2c05426_si_001.pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05426?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05426?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05426?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.2c05426?fig=fig5&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c05426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dataset, which can significantly increase training time. To
address this, we additionally explore fine-tuning (OC20 →
OC22) experiments. In fine-tuning, models are initialized with
pretrained weights learned from training on OC20. The
pretrained models are then fine-tuned by training on just
OC22. While approaches to fine-tuning vary in which portion
of the network weights are updated, we limit our experiments
to updating all the weights and leave more rigorous strategies
as future work for the community.28 For S2EF-Total, we
experiment with fine-tuning using different fractions of the
OC22 dataset. All fine-tuning experiments are performed using
public OC20 adsorption-energy model checkpoints found at
https://github.com/Open-Catalyst-Project/ocp/blob/main/
MODELS.md.
Through these experiments we hope to share results that

provide insights beyond just performance on OC22. Building a
dataset that spans all possible applications, chemical diversity,
and level of DFT theory is not computationally feasible.
However, as we demonstrate with OC22, by leveraging large
datasets, such as OC20, we may be able to train effective
models with much smaller datasets for specific domains; even if
they contain critical differences like DFT theory and material
compositions.

■ RESULTS
We report results for all baseline models and tasks below. All
validation results can be found in the SI.
S2EF-Total. Results on SchNet,12 DimeNet++,14 Force-

Net,15 SpinConv,16 PaiNN,75 GemNet-dT,17 and GemNet-
OC19 are shown in Table 3 (top). All models make energy and
per-atom force predictions. SchNet and DimeNet++ make
force predictions via a gradient of energy with respect to
atomic positions, while all other models make direct force
predictions. Across all metrics, GemNet-OC performs the best.

While GemNet-dT also demonstrates competitive force
metrics, GemNet-OC significantly outperforms all models on
energy based metrics. This may be due to the large receptive
field (cutoff = 12 Å) of GemNet-OC better capturing long-
range interactions and its unique ability to explicitly capture
quadruplet interactions.
Results across the two test subsplits, In Domain (ID) and

Out of Domain (OOD), are shown in Table 3. As expected, ID
metrics are better than OOD. Unlike OC20 where ID and
OOD-based splits had fairly close metrics, OC22 OOD metrics
are substantially higher than ID. By definition, OOD contains
combinations of material species not seen in the training set,
i.e., if Ag−Cu is OOD, then a Ag−Cu only interaction has
never been seen during training. This suggests generalization in
the context of total energy predictions is more challenging than
a referenced adsorption energy. Although physically motivated,
the OC20 adsorption energy target can also be thought of as a
form of Δ-learning,78−80 simplifying the complexity of the
problem to learning a correction to some base property. To
explore this in the context of OC22, we report results on a per-
element linearly fit reference in the SI that helps improve
performance. We refrained from making this the base task for
OC22 in order to encourage alternative schemes or approaches
to target normalization. OC20 results on the proposed tasks
are also available in the SI, with similar poor performance
suggesting S2EF-Total to be a generally more challenging task.
Joint training experiments on OC20 and OC22 are

conducted for the top performing models, GemNet-OC,
PaiNN, and SpinConv. Table 3 additionally contains results
of different sizes of OC20 combined with OC22. To stay
consistent with OC22, DFT total energy targets were used for
OC20. With the addition of OC20 training data, GemNet-OC
saw improvements in both energy and force predictions while
PaiNN and SpinConv saw improvements to either only energy
or forces, respectively. This suggests that despite the

Table 3. Predicting Total Energy and Force from a Structure (S2EF-Total)a

S2EF-Total Test

Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑ EFwT [%] ↑

Training Model ID OOD ID OOD ID OOD ID OOD

OC22-only Median Baseline 163.4235 160.4547 0.0745 0.0729 0.0018 0.0018 0.00 0.00
SchNet12 7.9241 7.9248 0.0601 0.0823 0.3633 0.2195 0.00 0.00
DimeNet++13,14 2.0952 2.4751 0.0426 0.0585 0.6062 0.4360 0.00 0.00
ForceNet15 0.0564 0.0619 0.3507 0.2795 0.00 0.00
SpinConv16 0.8364 1.9440 0.0377 0.0631 0.5905 0.4118 0.00 0.00
PaiNN75 0.9513 2.6300 0.0449 0.0583 0.4852 0.3449 0.00 0.00
GemNet-dT17 0.9385 1.2713 0.0316 0.0405 0.6647 0.5303 0.00 0.00
GemNet-OC19 0.3742 0.8287 0.0294 0.0397 0.6913 0.5500 0.02 0.00

OC20-2 M + OC22 PaiNN75 0.3993 1.5293 0.0475 0.0644 0.4670 0.3201 0.01 0.00
SpinConv16 0.9310 1.7897 0.0361 0.0552 0.6210 0.4641 0.00 0.00
GemNet-OC19 0.4207 0.9135 0.0288 0.0373 0.6929 0.5602 0.01 0.00

OC20-20 M + OC22 PaiNN75 0.3601 1.4538 0.0457 0.0605 0.4795 0.3410 0.01 0.00
SpinConv16 0.9721 1.5337 0.0355 0.0524 0.6008 0.4705 0.01 0.00
GemNet-OC19 0.3105 0.8274 0.0268 0.0366 0.7216 0.5845 0.08 0.01

OC20-All + OC22 SpinConv16 1.2968 1.7044 0.0397 0.0467 0.5293 0.4417 0.00 0.00
GemNet-OC19 0.3111 0.6893 0.0269 0.0342 0.7064 0.5859 0.07 0.00

OC20 → OC22 SpinConv16 1.1248 1.9661 0.0359 0.0505 0.6016 0.4578 0.00 0.00
GemNet-dT17 0.5715 1.0401 0.0307 0.0406 0.6734 0.5378 0.02 0.00
GemNet-OC19 0.2391 0.9378 0.0297 0.0407 0.6780 0.5364 0.13 0.00
GemNet-OC-Largeb,19 0.2173 1.0315 0.0272 0.0400 0.7298 0.5776 0.19 0.00

aResults are shared for the OC22-only, joint, and fine-tuning training strategies. Experiments are evaluated on the test set. bFirst fine-tuned energy
output weights on OC22 energies, then fine-tuned entire network on OC22 energies+forces.
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differences in DFT theory, the additional data is still
meaningful in improving model predictions. However,
increasing the amount of OC20 data had mixed results.
GemNet-OC generally saw improvements across all metrics
while SpinConv and PaiNN saw either minor improvements or
worse performance. We note that training samples were
randomly drawn, i.e., experiments with a larger proportion of
OC20 would have seen fewer samples of OC22 during
training. The differences in trends could be a result of model
data efficiency and capacity. Exploring alternative sampling
strategies to joint training could aid models and improve
trends further. For our fine-tuning experiments, we evaluate
GemNet-OC, SpinConv, and GemNet-dT models. Fine-tuning
is performed by first training a model on OC20. This
pretrained model is then fine-tuned by training on only
OC22. Trained OC20 models are publicly available and were
directly obtained from https://github.com/Open-Catalyst-
Project/ocp. SpinConv saw little improvements on forces
and worse performance for energies. GemNet-dT and
GemNet-OC saw significant improvements to energy MAE

and minor improvements to force MAE for ID data. For OOD
data, GemNet-dT generally saw improvements with fine-
tuning while all other models either saw similar or worse
results. To drive performance further, we trained GemNet-OC-
Large, a larger, more parametrized version of GemNet-OC
under a more careful fine-tuning strategy. Here, the energy
output weights were first fine-tuned on OC22 energies,
afterward, the entire network was fine-tuned on energies and
forces. The large variant resulted in improved ID energy and
force predictions, with OOD still seeing little or negative
impacts. Fine-tuning experiments were extremely delicate and
required careful selection of learning rates and hyper-
parameters, details are highlighted in the SI. While our initial
fine-tuning results were generally limited to energy improve-
ments, we hope the future development of more rigorous
methods could lead to better performance across all metrics.
A potential benefit accompanying pretraining and fine-

tuning is the need for less training data. A model initialized
with meaningful weights could simplify the need to learn
interactions and representations from scratch by utilizing an

Figure 6. Results of GemNet-OC on S2EF-Total across different training data sizes. Two strategies are compared here: OC22-only and fine-tuning.
Results are reported for both ID (solid) and OOD (dashed) on the test set.

Table 4. S2EF-Total Fine-Tuning Results Trained on Various Fractions of the OC22 Dataseta

S2EF-Total Test

Energy MAE [eV] ↓ Force MAE [eV/Å] ↓ Force Cosine ↑ EFwT [%] ↑

Training Fraction of OC22 ID OOD ID OOD ID OOD ID OOD

OC22-only 5% 0.5847 1.7983 0.0430 0.0476 0.4967 0.4083 0.00 0.00
15% 0.3727 1.4651 0.0357 0.0459 0.6142 0.4805 0.01 0.00
30% 0.3546 1.3242 0.0327 0.0445 0.6589 0.5132 0.04 0.00
50% 0.3692 1.2064 0.0323 0.0436 0.6566 0.5134 0.02 0.00
100% 0.3742 0.8287 0.0294 0.0396 0.6913 0.5500 0.02 0.00

OC20 → OC22 0% 487.1210 434.6896 0.3650 0.3617 0.1944 0.1946 0.00 0.00
5% 0.5469 1.3938 0.0373 0.0394 0.5482 0.4766 0.00 0.00
15% 0.3103 1.0339 0.0325 0.0384 0.6212 0.5180 0.03 0.00
30% 0.2519 0.9803 0.0305 0.0384 0.6565 0.5356 0.08 0.00
50% 0.2365 0.9154 0.0293 0.0389 0.6790 0.5464 0.13 0.01
100% 0.2391 0.9378 0.0297 0.0407 0.6780 0.5364 0.13 0.00

aGemNet-OC19 was used for all experiments. Note, a fraction of 0% for OC22 corresponds to the baseline of directly evaluating a pretrained
checkpoint from OC20 on OC22, with no additional training. All experiments are evaluated on the test set.
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Figure 7. Summary of S2EF-Total test results as a function of training size (A,C) and training time (B,D). Models are color coded and the
respective training strategy is indicated by different shapes. For fixed dataset sizes, fine-tuning experiments see improvements in both energy and
force predictions. Increasing data consistently helps performance when moving from OC22 to OC20+OC22. Pareto fronts are provided for current
optimums across training sizes and times. Fine-tuning experiments do not consider the dataset sizes and training times used during pretraining.
Results are averaged across both ID and OOD splits.

Table 5. Predicting Total Relaxed Energy from an Initial Structure (IS2RE-Total)a

IS2RE-Total Test

Energy MAE [eV] ↓ EwT [%] ↑

Approach Training Model ID OOD ID OOD

Direct OC22-only Median Baseline 176.2560 171.8536 0.00 0.00
SchNet 2.0012 4.8468 1.03 0.45
DimeNet++ 1.9600 3.5186 0.65 0.38
PaiNN 1.7160 3.6835 0.88 0.38
GemNet-dT 1.6771 3.0837 1.49 0.45

OC20+OC22 SchNet 3.0384 4.2996 0.38 0.53
DimeNet++ 1.9614 3.4605 1.18 0.42
PaiNN 1.7330 3.7519 0.76 0.49
GemNet-dT 2.5234 4.2290 0.80 0.60

OC20 → OC22 GemNet-OCb 1.1527 1.7476 3.66 0.98
Relaxation OC22-only SpinConv 1.7367 2.6668 1.49 0.94

GemNet-dT 1.8129 2.0439 1.64 0.83
GemNet-OC 1.3294 1.5841 2.02 1.40

OC20+OC22 SpinConv 2.2959 2.5902 1.26 0.68
GemNet-OC 1.2007 1.5339 2.63 2.15

OC20 → OC22 SpinConv 1.7997 2.8884 1.41 0.57
GemNet-OC 1.1201 1.8490 3.89 1.77
GemNet-OC-Large 1.2534 2.1154 1.60 0.98

aResults are shared for the OC22-only, joint, and fine-tuning training strategies. Experiments are evaluated on the test set. bGemNet-OC pretrained
on OC20+OC22 S2EF-Total
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alternative dataset. To explore this, we evaluated the
performance of a pretrained GemNet-OC model fine-tuned
on various fractions of OC22. As shown in Figure 6, a fine-
tuned GemNet-OC consistently outperforms its OC22-only
variant across all data sizes for the ID split, with diminishing
returns for both strategies around ∼50%. On OOD, energy
performance continues to improve with data size. In Table 4,
we additionally show the performance of a pretrained OC20
GemNet-OC used to directly evaluate OC22 (Fraction = 0%).
As expected, energy metrics are extremely poor given the
OC20 original target is adsorption energy. Force metrics are
also extremely poor, suggesting the fine-tuning performance is
not merely a result of a good pretrained model, but an actual
transfer of knowledge from the two datasets. Figure 7
illustrates the various models and approaches as a function
of training size and time. Notably, we see a strong linear trend
in performance with data size. With saturation yet in sight, we
expect more joint dataset efforts to continue to aid in
performance. While for a fixed dataset size, fine-tuning efforts
improved performance, they were often more costly in training
time (Figure 7B,D). We anticipate future fine-tuning develop-
ments to be not only more accurate, but efficient as well.
Similar fine-tuning experiments with OC20 models trained on
DFT total energy targets were also performed. Results were
consistent with those shared above, suggesting that despite a
difference in targets, models are learning a similar underlying
representation that is being transferred to OC22.

IS2RE-Total. We explore two approaches for predicting
relaxed energies from initial structures�“Direct” and
“Relaxation”.8 The first directly predicts the relaxed energy
with a single call to the model. The relaxation approach uses a
S2EF-Total model to run a structural relaxation�iteratively
predicting forces and updating atomic positions until a relaxed
structure and its corresponding energy is reached. While OC20
has shown relaxation based approaches to be superior to direct,
they are 200−300× slower, motivating the potential benefits of
direct models.
Table 5 presents IS2RE-Total results on both direct and

relaxation approaches under the different training scenarios.
Whereas OC20 saw relaxation based approaches to consis-
tently perform better, we see mixed results here. The best
relaxation-based approach, GemNet-OC, achieves an EwT of
3.89% indicating models have significant room for improve-
ment. For the relaxation approach, fine-tuning consistently
outperforms OC22-only. The best direct approach, GemNet-
OC, also only achieves an EwT of 3.66%. Here, joint training
consistently hurts performance. Following literature efforts,18

fine-tuning was done from the top performing S2EF-Total
checkpoint - GemNet-OC OC20-All+OC22. While the best
performing ID results come from a direct approach, OOD
metrics are considerably better via the relaxation method,
indicating their ability to better generalize. We evaluate OC20
IS2RE-Total performance in the SI and observe similar poor
results, suggesting IS2RE-Total to be a considerably more
challenging variation.

Figure 8. Demonstration of GemNet-OC solving the IS2RS and IS2RE-Total tasks via the relaxation approach. Initial, DFT Relaxed, and the ML
predicted relaxed structures are shown for each system. The first three columns were randomly sampled from “successful” cases in which IS2RE-
Total energy MAE was less than 0.1 eV, while the latter columns are “failure” cases, with energy MAEs greater than 0.5 eV. Oxygen found in the
adsorbate is illustrated with a high contrast red and made smaller to distinguish it from oxygen in the catalyst material.

Table 6. Predicting Relaxed Structures from Initial Structures (IS2RS)a

IS2RS Test

ADwT [%] ↑ FbT [%] ↑ AFbT [%] ↑

Training Model ID OOD ID OOD ID OOD

OC22-only IS baseline 43.39 45.26 0.00 0.00 0.03 0.10
SpinConv 51.33 47.08 0.00 0.00 4.08 1.47
GemNet-dT 57.84 54.17 0.00 0.00 4.16 3.54
GemNet-OC 59.47 55.72 0.00 0.00 5.49 4.45

OC20+OC22 SpinConv 53.99 52.39 0.00 0.00 2.64 2.38
GemNet-OC 58.55 58.44 0.00 0.00 8.01 6.58

OC20 → OC22 SpinConv 54.21 51.42 0.08 0.00 6.31 3.24
GemNet-OC 55.55 50.50 0.08 0.00 9.02 6.59
GemNet-OC-Large 57.23 54.63 0.00 0.00 10.41 8.09

aAll models predicted relaxed structures through an iterative relaxation approach. The initial structure was used as a naive baseline (IS baseline).
Experiments are evaluated on the test set.
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IS2RS. To evaluate the prediction of relaxed structures from
initial structures, we select the top performing S2EF-Total
models GemNet-dT, SpinConv, and GemNet-OC. Similar to
OC20, we use these models to run ML driven structure
relaxations (Figure 8). Relaxed structures were then evaluated
with DFT to determine whether the predicted relaxed
structures are valid. Table 6 shows GemNet-OC outperform-
ing all other models across all metrics. Joint training and fine-
tuning approaches both improve DFT force based metrics over
OC22-only. GemNet-OC-Large fine-tuned achieves the best
force metrics. Pursuant to OC20, non-DFT distance based
metrics like ADwT struggle to correlate well with the practical
DFT metrics.10 Both FbT and AFbT results indicate the
models need significant improvement to achieve the level of
accuracy needed for practical applications.
Does OC22 Benefit OC20? Alongside developing more

accurate models, exploring augmentation strategies is another
opportunity to improve performance on existing datasets like
OC20.10 An interesting question is whether OC22 data may
improve model performance on OC20. It has already been
shown that the use of auxiliary data such as off-equilibrium MD
or rattled data can lead to state-of-the-art results on OC20.19

To that end, we explore the impact that jointly training with
OC22 and OC20 has on OC20 performance. Note OC22 is a
significantly smaller and more limited dataset. OC20 contains
∼134 M training data points and spans a large swath of
materials. OC22 on the other hand is only ∼6% of the size of
OC20, limited to only oxide materials, and places no
constraints on atoms in the systems. Table 7 compares the

performance of GemNet-OC trained on OC20 and
OC20+OC22 as evaluated on both OC20 and OC22
separately. As expected, when trained on only OC20, OC22
metrics are poor�attributed to the lack of oxides in OC20 and
the difference in DFT theories. When trained on
OC20+OC22, however, we see a significant improvement in
energy MAE (∼20%). Force based metrics are either no
different or slightly worse. Despite the joint dataset containing
only a small fraction of OC22, it aided by a margin larger than
any of the previous MD or rattled data efforts. Exploring in
more detail as to how and why such improvements were
observed could aid in systematically curating datasets to further
improve OC20 performance.
Adsorption Energy from Total Energy Models. One of

the difficulties with assessing the utility of total energy models
is that, like DFT, total energy values themselves are
meaningless without an appropriate reference. Here we explore
the performance of adsorption energy predictions via the total
energy models. As previously detailed (see Tasks), calculating

adsorption energies with OC22 data is ill-posed because of the
potential inconsistencies resulting from relaxing the clean slab
and adsorbate+slab in parallel. To address this, we sampled a
subset of systems (∼700) from OC22 and reran DFT
calculations with a more conventional procedure. Slabs were
first relaxed, then adsorbates were placed on the relaxed slab,
and finally the adsorbate+slab system was relaxed. Additionally,
the bottom layers in the surface were fixed. This new data
allowed us to validate the predicted adsorption energy from
total energy models.
Total energy models were utilized to calculate adsorption

energies using two different schemes. In the first approach,
which we will refer to as Mixed-ML, only the adsorbate+slab
energy E( )sys in eq 4 is predicted with ML. Note, because
OC22 includes systems with multiple adsorbates, the number
of adsorbates, nad, is included in the calculation. Although this
will yield the averaged adsorption energy across several
adsorbates, for convenience, we will refer to it as the
adsorption energy.

E
E E E n

nad
Mixed sys slab

DFT
gas
DFT

ad

ad
=

·
(4)

Calculating the adsorbate+slab energy is the bottleneck in
estimating adsorption energies, so replacing these DFT
calculations with an ML potential could substantially improve
the efficiency of screening new catalysts across a large swath of
the chemical space. The second approach, Full-ML, predicts
the energy of the slab E( )slab and the adsorbate+slab E( )sys ,
which would improve throughput even further.

E
E E E n

nad
Full sys slab gas

DFT
ad

ad
=

·
(5)

The adsorption energy results for three models, GemNet-
OC, PaiNN, and SpinConv are reported in Table 8. All models

were trained on the S2EF-total task and used to run ML
relaxations from the same initial structures as the DFT
validation. More details on these calculations can be found in
the SI. As expected, the error is higher than predicting
adsorption energy directly as was done in OC20, but
predicting total energy is a more challenging and general task.
Comparing the Mixed-ML and Full-ML adsorption energy

results allows us to examine whether a cancellation or
compounding of errors occurs. In the Full-ML approach, the
ML potential could have some systemic bias compared to the

Table 7. GemNet-OC Results Trained on Either OC20 or
Both OC20+OC22 and Evaluated on OC20 and OC22a

Training Energy Force Force

Data MAE [eV] ↓ MAE [eV/Å] ↓ Cosine ↑
OC22 evaluation

OC20 55.9003 0.3842 0.1674
OC20+OC22 0.6606 0.0305 0.6574

OC20 evaluation
OC20 0.3938 0.0219 0.6505
OC20+OC22 0.3171 0.0231 0.6486

aResults are averaged across all ID/OOD validation splits. Total
energies are used for all dataset targets.

Table 8. Adsorption Energy Predictions from Total Energy
Models on a Subset of the OC22 Validation ID Dataseta

Training Data Model

Mixed-ML Ads.
Energy

Full-ML Ads.
Energy

MAE [eV] ↓ MAE [eV] ↓
OC22 GemNet-OC 0.678 0.767
OC20-All+OC22 GemNet-OC 0.691 0.724
OC22 PaiNN 1.295 0.965
OC20-2M+OC22 PaiNN 0.795 0.825
OC22 SpinConv 1.357 1.001
OC20-2M+OC22 SpinConv 0.984 0.980
aTwo scenarios are considered, Mixed-ML, where only the energy of
adsorbate+slab is predicted with ML, and Full-ML, where both the
slab and adsorbate+slab are predicted with ML.
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total energy DFT labels, yet still produce accurate adsorption
energies if this error is “cancelled out” by subtracting off the
ML slab prediction containing a similar bias. Alternatively,
because ML is used for both an adsorbate+slab and slab
prediction, errors could accumulate in the final prediction.
While GemNet-OC does not observe any cancellation of
errors, PaiNN and SpinConv see some improvements on the
Full-ML approach. However, these trends go away when the
training is augmented with OC20 data, with both approaches
producing similar results. While adsorption energy prediction
from total energy models is still far from chemical accuracy
∼0.1 eV, we demonstrate the utility of current models
compared to literature studies below. Additionally, we envision
that the release of the OC22 dataset will lead to rapid
modeling improvements as was the case for OC20.
Comparisons with Literature. To demonstrate relevance

of our models beyond the OC22 dataset, we use our models to
compare predicted adsorption energies and trends with
corresponding existing data in the literature for O*, H*, and
OH*.
Figure 9A plots our predicted values for the adsorption

energies of O*, H*, and OH* against a sample set of literature
values55,81 for rutile surfaces. The adsorption energies
demonstrated a linear correlation of at least 75% with the
majority of predicted values within 0.6 eV of the literature. The
1 eV discrepancy of several outliers could be accounted for by
several differences in computational parameters between the
literature values that utilized BEEF-vdW55 and the training
data for OC22. These discrepancies include the lack of
Hubbard U corrections and the absence of spin-polarization in
the literature. Despite the large deviation in some of the BEEF-
vdW data points, this comparison demonstrates that a majority

of our predicted adsorption energies for some compositions
are agnostic of the functional.
From the adsorption energy, we can obtain scaling

relationships which are useful for identifying optimal catalysts
across a variety of materials. Predicting these trends with
OC22 will demonstrate the value of our model as a viable tool
for screening catalysts. Figure 9B shows the scaling relationship
between the Gibbs adsorption energy of OH* and OOH*
calculated at standard conditions (T = 298.15 K, P = 1 bar) in
literature62 and predicted data points using OC22 (see Table
S11 in the SI for the Gibbs energy corrections). Our linear
fitting of the slope (0.73) and intercepts (3.44) for ΔGOOH* vs
ΔGOH* are consistent within 0.05 eV of the literature slope
(0.73) and intercepts (3.49).62 We also demonstrated a similar
fitting for ΔGO* vs ΔGOH* (see SI) albeit with our intercept
overestimating by approximately 0.7 eV. Despite the
significantly higher MAE and lower R2 in the predicted
relationships, we were still able to obtain a significant linear
correlation above 60%.
While adsorption energy plays an important role for catalyst

discovery, incorporating vibrational and zero point energy
contributions are necessary for Gibbs energy calculations.
Gibbs energy of adsorption (ΔGad) is often necessary for
constructing accurate reaction pathways, creating microkinetic
models, and determining the overpotential. However, at
specific atmospheric conditions, the adsorption energies can
generally be shifted by a constant correction value to obtain
ΔGad. To demonstrate this, we plotted a minimal set of data
points (15−20) of ΔGad at standard temperature and pressure
against the adsorption energy to obtain a constant shift
(ΔGcorr) between the two quantities. We can therefore add
ΔGcorr to the adsorption energy of any system with the same
adsorbate to get ΔGad (see Figure S4). This method of

Figure 9. (A) Comparison of OC22 predicted (y-axis) and literature (x-axis) values for the adsorption energies of O*, H*, and OH* across
different OOD metal oxide compounds for rutile structures (see SI for a comparison of perovskite structures). A parity line (black-dashed) is
provided for reference as well as a line above and below to indicate the mean absolute error (blue-dashed). (B) A comparison of ΔGOOH* (y-axis)
and ΔGOH* (x-axis) with predicted (red) and literature (blue) data points shown along with their corresponding linear fits (dashed lines). All
predictions were performed using the GemNet-OC OC20+OC22 model.
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calculating ΔGad when applied to predicted adsorption
energies circumvents the need for a separate model of ΔGad.
For more details in regards to literature validation and other

scaling relationships, we refer the reader to the SI.

■ DISCUSSION
There are many challenges to building large datasets and fitting
generalizable models in computational catalysis, some of which
were recently summarized.10 All of the challenges described
also apply to the OC22 dataset - model performance varies
across adsorbates and materials, direct force predictions tend
to perform the best despite breaking energy conservation,
developing helpful metrics for common tasks like local
relaxations is difficult, and choosing the right calculations to
improve the performance and generalizability of models is
challenging. This work adds to these difficulties by highlighting
additional challenges in capturing long-range interactions,
developing models that go beyond adsorption energy, and
fitting models with multiple datasets and levels of theory.
The performance of baseline models in this work is

impressive given the difficulty of predicting the total system
energy of complex oxide surfaces, but challenges still remain.
The best results on the most general S2EF-Total task using a
transfer learning approach from OC20 has an energy MAE of
0.24 eV for ID performance and 0.94 eV for OOD
performance. Using that same model to predict relaxed total
energies yields energy MAEs of 1.12 eV for ID and 1.85 eV for
OOD predictions. These results are somewhat more
impressive on a per-atom basis as is common for formation
energy estimates of materials. However, for predicting
experimentally relevant properties like the overpotential for
the OER, these results are far from sufficient. We note that the
initial baseline models for OC20 were similarly unhelpful for
catalyst activity predictions, but rapid contributions from the
broader community greatly improved their accuracy and
predictive power. We hope that similar progress is seen for
the tasks here. We also expect that the current models may
already be helpful for certain more limited tasks, such as
accelerating future oxide calculations with the use of online
fine-tuning.82

The tasks proposed in this work aim to push the community
more in the direction of a general purpose potential, rather
than separate models for each specific property. As an example,
the tasks in OC20 were limited to the prediction of a specific
property - the adsorption energy, following the most common
approach in the community.83−85 This was a reasonable choice
as the adsorption energy is a common descriptor for catalytic
properties, and the adsorption energy itself was thought to be
easier to fit than the DFT total energies. However, defining the
tasks in this way meant that resulting models could only
predict the adsorption energy and were unhelpful for
predicting other surface properties like the surface energy.
These limitations are highlighted in oxide catalysis where the
stability of various surface terminations is needed. The total
energy tasks in this work should encourage models that serve
as general DFT surrogates - making predictions on a much
wider range of properties.
Future Directions. Long-Range Interactions. The OC22

dataset contains long-range interactions that are likely difficult
to capture in existing GNN models. Unlike metal surfaces
which have a sea of electrons that can screen interactions,
many of the oxides in OC22 are semiconductors with
considerable partial charges (especially on the oxygen

atoms). Electrostatics have very long-range effects (energy
decaying as 1/r), and the partial charges can vary from system
to system. The interaction of magnetic spins in systems with
spin polarization is also long-ranged. This poses a challenge for
the GNNs used in this work, which are often developed under
the assumption that local interactions dominate. The use of
several message passing steps or long-range local cutoffs may
allow for these long-range interactions to be captured. There
has been considerable effort in developing ML models that
include long-range interactions,86−88 and we expect those
approaches to be very useful in improving predictions for
OC22.
Higher-Level Theory. The OC22 dataset also highlights the

challenges of requiring multiple levels of theory for varying
properties and materials. The OC20 dataset was constructed
with the RPBE functional and neglected spin polarization,
which represented a good trade-off between accuracy and
computational cost for adsorption energies. However, some
oxide surfaces require proper selection of Hubbard U
corrections and can exhibit significant spin polarization.
Combining datasets with multiple levels of theory, or
upgrading datasets from less accurate to more accurate
methods are popular questions in the small molecule
community,89,90 but applying these ideas to OC20/OC22
will require extending these approaches to large datasets and
inorganic materials, and we hope the community rises to this
challenge. An obvious future direction is to improve the data
quality with far more expensive hybrid functionals on the
relaxed structures here.
Magnetic and Charge Effects. While additional informa-

tion beyond just atom positions and atomic numbers have yet
to improve performance on earlier datasets like OC20, it
remains an open problem, how to best incorporate additional
physics. In the context of OC22, magnetic configurations play
an important role in oxide chemistry. Oxides exhibit different
magnetic configurations for the same structure. These
magnetic polymorphs can lead to different energetic, structural
and magnetic trajectories along with different oxidation states
during relaxation which can drastically affect chemisorp-
tion.91−93 Identifying ways to include magnetic moments in
future models or training strategies might be an important
contribution to improving GNN performance.
We would also like to explore the effect of charge balancing

in the future for our oxide systems. In contrast to metallic
systems, semiconductors can thermodynamically favor surface
reconstruction over electron promotion when dopants, charges
or stoichiometric defects are present. Essentially, bonds can be
broken or created in such a way that electrons are prevented
from getting promoted into the conduction band in a process
called self-compensation.94,95 As a result, nominally identical
initial structures, but with different numbers of electrons (and
consequently, Fermi levels), can relax to significantly different
final geometries (e.g., adatoms being expelled or dimers
formed or broken96). This effect can be extremely long-range
as it only depends on the total number of shared electrons in
the system, i.e., a vacancy introduced on one side of the slab
may affect a local geometry on the other side.
Capturing the complexity of such phenomena with ML

models would require a more in-depth analysis of a system’s
Fermi level’s and the model’s ability to capture long-range
interactions. In particular, the differences in forces and in final
geometries induced by electronic doping should be explored,
as well as the ability of GNNs to differentiate between them

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c05426
ACS Catal. 2023, 13, 3066−3084

3079

https://pubs.acs.org/doi/suppl/10.1021/acscatal.2c05426/suppl_file/cs2c05426_si_001.pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c05426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


using an additional doping descriptor. To disentangle the effect
of oxygen vacancies on Fermi level vs their local effects, a
purely charging-based dataset may be prepared. While Fermi
level positions are results of DFT calculations, electron
counting and band filling,95,97 can be leveraged to provide
empirically similar information as additional data.
Solvation Effects. The impact of solvation is another area

for future research. Although we did not directly model
solvation effects in this work, we are able to account for the
consequences of partial surface dissolution by incorporating
random oxygen vacancies at varying coverages. Oxide surfaces
are prone to partial dissolution from solvents which can lead to
surface vacancy defects that can modify catalytic properties.98

Modeling OER on RuO2 and IrO2 in the presence of these
defects allowed for previous computational studies to obtain
descriptors of overpotential and activity that more closely
reflect experimental observations.99,100

Training Strategies. Joint training on both the OC20 and
OC22 datasets leads to several unexpected results. Surprisingly,
naively fitting on both OC20 and OC22 (much smaller
dataset) leads to large accuracy improvements for predicting
OC20 energies, as shown in Table 7. In addition, models
trained on either OC22 or OC20+OC22 both appear to follow
the same log−log scaling for energy MAE (Figure 7). These
observations open the door to using a wide array of existing
large datasets (NOMAD,101 Materials Project,9 OQMD37)
that although different, could aid in model development. These
ideas can be rationalized if all of these datasets together can
help learn more flexible and useful representations, regardless
of their specific tasks or details.
Fine-tuning and transfer learning baselines were investigated

as potential routes to improve accuracy across both OC20 and
OC22 and reduce the computational intensity of training
GNNs for these tasks. The most accurate models for both
OC20 and OC22 were models trained on both datasets
simultaneously, which indicates that a common representation
can be learned and shared by both datasets. Surprisingly, the
limited fine-tuning experiments in this work did not improve
substantially on the accuracy/cost Pareto front (Table 7).
However, there are many possible fine-tuning strategies and a
large number of variations (e.g., which sections of the GNN to
freeze or fit, or leaving this decision to an attention block28),
and we expect more progress from the community in this area.
These approaches are necessary to encourage the reuse of large
models, and to reduce the computational cost of obtaining
state-of-the-art models for future small datasets.
Alternative Property Predictions. Models trained on OC22

could predict the total energies for any slab or adsorbate+slab
which ultimately allows us to determine any thermodynamic
quantity including adsorption energy, surface energy, and
reaction energy. Adsorption and reaction energies are useful
for identifying viable catalysts. We can also predict the surface
energy in order to construct elaborate phase diagrams which
can be used to assess the thermodynamic stability of a surface
at varying adsorbate coverages. Pourbaix diagrams (applied
potential vs pH) are especially important for determining the
thermodynamic viability of electrocatalysts. The surface energy
can also be used to model the equilibrium crystal structure or
Wulff shape. With a predictive model that circumvents DFT
calculations, all these applications, which ordinarily require
hundreds of DFT calculations, are possible with little to no
computational cost.

This dataset will have a broad impact in discovering oxide
catalysts for a variety of reaction families and unraveling
complex reaction mechanisms in these systems. Oxide
materials are likely present in any reaction under strong
oxidative conditions, such as the accelerated degradation of
long-lived contaminants like PFOA102 or systematically
upgrading chemical building blocks.103 Photocatalysis, which
directly uses available sunlight to drive chemical reactions also
relies heavily on oxides such as TiO2 due to their desirable
optical properties81 and could benefit from this dataset. One
example which is currently computationally expensive to study
is the Mars-van Krevelen (MvK) mechanism, which is one of
the most common catalytic mechanisms in ionic crystals.104,105

In the MvK, an adsorbate binds to a surface oxygen to form a
new intermediate which desorbs to leave behind an oxygen
vacancy, which can later be replenished by oxygen atoms from
incoming adsorbates. By explicitly including oxygen defects
and vacancies in the dataset generation process, we hope the
resulting models will be helpful for accelerating these studies.
Similar reactions that could benefit from these approaches are
CO2 capture on carbides

106 or nitrate reduction on nitrides.107

Experimental Outlook. Ultimately, the goal of developing
accurate computational models is to inform experimental
design and discovery, either through direct quantitative
agreement or by providing insight into the underlying physical
phenomena. It is important to be cognizant of the fact that the
catalyst systems we simulate with DFT are idealized versions of
the actual physical systems observed in experiments. For
instance, the structure and composition of an oxide catalyst are
prone to change during the reaction due to interactions with
reaction intermediates and the surrounding medium, which
complicates the connection with idealized DFT calculations.
One way to enhance this work would be to complement it with
experimental validation and auxiliary data from other modeling
techniques and experiments like microkinetic models and
operando spectroscopy. In spite of these challenges, DFT has
proven to be an essential tool for providing atomistic level
insights for catalysis and we envision that the improvements
made in modeling oxide catalysts as a result of the OC22
dataset, e.g. considering the influence of surface coverages and
defects on the oxide structure at a much larger scale than
previously possible, will pave the way toward strengthening the
connection with experiments and unearthing underlying
catalyst design principles.
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Uncertainty-Aware Directional Message Passing for Non-Equilibrium
Molecules. arXiv preprint, Apr. 5, 2020, ver. 3. DOI: 10.48550/
arXiv.2011.14115.

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c05426
ACS Catal. 2023, 13, 3066−3084

3081

https://pubs.acs.org/doi/suppl/10.1021/acscatal.2c05426/suppl_file/cs2c05426_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zachary+Ulissi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9401-4918
mailto:zulissi@andrew.cmu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="C.+Lawrence+Zitnick"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:zitnick@meta.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Richard+Tran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-0308-2182
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Janice+Lan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Muhammed+Shuaibi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brandon+M.+Wood"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Siddharth+Goyal"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Abhishek+Das"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Javier+Heras-Domingo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-4322-3146
https://orcid.org/0000-0002-4322-3146
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adeesh+Kolluru"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ammar+Rizvi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nima+Shoghi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Anuroop+Sriram"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fe%CC%81lix+Therrien"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jehad+Abed"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-1387-2740
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oleksandr+Voznyy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8656-5074
https://orcid.org/0000-0002-8656-5074
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Edward+H.+Sargent"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0396-6495
https://pubs.acs.org/doi/10.1021/acscatal.2c05426?ref=pdf
https://doi.org/10.1016/S0022-0728(80)80084-2
https://doi.org/10.1016/S0022-0728(80)80084-2
https://doi.org/10.1016/j.jpowsour.2018.07.125
https://doi.org/10.1016/j.jpowsour.2018.07.125
https://doi.org/10.1016/j.jpowsour.2018.07.125
https://doi.org/10.1016/j.arabjc.2019.08.006
https://doi.org/10.1016/j.arabjc.2019.08.006
https://doi.org/10.1021/acs.chemmater.0c01894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemmater.0c01894?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01060?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jcat.2021.02.026
https://doi.org/10.1016/j.jcat.2021.02.026
https://doi.org/10.1016/j.jcat.2021.02.026
https://doi.org/10.1021/acs.accounts.1c00153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.1c00153?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.0c04525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.0c04525?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.1021/acscatal.2c02291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.2c02291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.2c02291?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.1103/PhysRevLett.120.145301
https://doi.org/10.48550/arXiv.2011.14115
https://doi.org/10.48550/arXiv.2011.14115
https://doi.org/10.48550/arXiv.2011.14115
https://doi.org/10.48550/arXiv.2011.14115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2011.14115?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c05426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(15) Hu, W.; Shuaibi, M.; Das, A.; Goyal, S.; Sriram, A.; Leskovec, J.;
Parikh, D.; Zitnick, C. L. Forcenet: A graph neural network for large-
scale quantum calculations. arXiv (Machine Learning), Mar. 2, 2021,
ver. 1. https://arxiv.org/abs/2103.01436.
(16) Shuaibi, M.; Kolluru, A.; Das, A.; Grover, A.; Sriram, A.; Ulissi,
Z.; Zitnick, C. L. Rotation invariant graph neural networks using spin
convolutions. arXiv (Machine Learning), June 17, 2021, ver. 1.
DOI: 10.48550/arXiv.2106.09575.
(17) Gasteiger, J.; Becker, F.; Günnemann, S. GemNet: Universal
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(75) Schütt, K.; Unke, O.; Gastegger, M. Equivariant message
passing for the prediction of tensorial properties and molecular
spectra. International Conference on Machine Learning 2021, 9377−
9388.
(76) Batzner, S.; Musaelian, A.; Sun, L.; Geiger, M.; Mailoa, J. P.;
Kornbluth, M.; Molinari, N.; Smidt, T. E.; Kozinsky, B. E. (3)-
equivariant graph neural networks for data-efficient and accurate
interatomic potentials. Nat. Commun. 2022, 13, 1−11.
(77) Musaelian, A.; Batzner, S.; Johansson, A.; Sun, L.; Owen, C. J.;
Kornbluth, M.; Kozinsky, B. Learning Local Equivariant Representa-
tions for Large-Scale Atomistic Dynamics. arXiv (Computational
Physics), Apr. 11, 2022, ver. 1. DOI: 10.48550/arXiv.2204.05249.
(78) Shuaibi, M.; Sivakumar, S.; Chen, R. Q.; Ulissi, Z. W. Enabling
robust offline active learning for machine learning potentials using
simple physics-based priors. Machine Learning: Science and Technology
2021, 2, 025007.
(79) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A.
Big data meets quantum chemistry approximations: the Δ-machine
learning approach. J. Chem. Theory Comput. 2015, 11, 2087−2096.
(80) Zhu, J.; Vuong, V. Q.; Sumpter, B. G.; Irle, S. others Artificial
neural network correction for density-functional tight-binding
molecular dynamics simulations. MRS Commun. 2019, 9, 867−873.
(81) Comer, B. M.; Medford, A. J. Analysis of photocatalytic
nitrogen fixation on rutile TiO2 (110). ACS Sustainable Chem. Eng.
2018, 6, 4648−4660.
(82) Musielewicz, J.; Wang, X.; Tian, T.; Ulissi, Z. FINETUNA:
fine-tuning accelerated molecular simulations. Machine Learning:
Science and Technology 2022, 3, 03LT01.
(83) Sorescu, D. C.; Thompson, D. L.; Hurley, M. M.; Chabalowski,
C. F. First-principles calculations of the adsorption, diffusion, and
dissociation of a CO molecule on the Fe(100) surface. Physical Review
B - Condensed Matter and Materials Physics 2002, 66, 354161−
3541613.
(84) Sholl, D. S.; Steckel, J. A. Density Functional Theory; John Wiley
& Sons, Inc.: Hoboken, NJ, USA, 2009; pp 1−31.
(85) Wellendorff, J.; Silbaugh, T. L.; Garcia-Pintos, D.; Nørskov, J.
K.; Bligaard, T.; Studt, F.; Campbell, C. T. A benchmark database for
adsorption bond energies to transition metal surfaces and comparison
to selected DFT functionals. Surf. Sci. 2015, 640, 36−44.
(86) Ko, T. W.; Finkler, J. A.; Goedecker, S.; Behler, J. General-
purpose machine learning potentials capturing nonlocal charge
transfer. Acc. Chem. Res. 2021, 54, 808−817.
(87) Zubatiuk, T.; Nebgen, B.; Lubbers, N.; Smith, J. S.; Zubatyuk,
R.; Zhou, G.; Koh, C.; Barros, K.; Isayev, O.; Tretiak, S. Machine
learned Hückel theory: Interfacing physics and deep neural networks.
J. Chem. Phys. 2021, 154, 244108.
(88) Behler, J.; Csányi, G. Machine learning potentials for extended
systems: a perspective. European Physical Journal B 2021, 94, 1−11.
(89) Grambow, C. A.; Li, Y.-P.; Green, W. H. Accurate
thermochemistry with small data sets: A bond additivity correction

ACS Catalysis pubs.acs.org/acscatalysis Research Article

https://doi.org/10.1021/acscatal.2c05426
ACS Catal. 2023, 13, 3066−3084

3083

https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.8b09657?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.susc.2018.11.019
https://doi.org/10.1016/j.susc.2018.11.019
https://doi.org/10.1039/D0TA12567A
https://doi.org/10.1039/D0TA12567A
https://doi.org/10.1073/pnas.1006652108
https://doi.org/10.1016/j.electacta.2007.02.041
https://doi.org/10.1016/j.electacta.2007.02.041
https://doi.org/10.1126/science.aad4998
https://doi.org/10.1126/science.aad4998
https://doi.org/10.1006/jcat.2002.3615
https://doi.org/10.1021/acsenergylett.0c02030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.0c02030?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.0c11821?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.0c11821?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsami.0c11821?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c02941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c02941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acscatal.1c02941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.1c00234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.1c00234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsenergylett.1c00234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.8b02219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.langmuir.8b02219?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.2102.05013
https://doi.org/10.48550/arXiv.2102.05013?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.48550/arXiv.1903.02428?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4966192
https://doi.org/10.1063/1.4966192
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1103/PhysRevX.8.041048
https://doi.org/10.1103/PhysRevX.8.041048
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.48550/arXiv.2204.05249
https://doi.org/10.48550/arXiv.2204.05249
https://doi.org/10.48550/arXiv.2204.05249?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/2632-2153/abcc44
https://doi.org/10.1088/2632-2153/abcc44
https://doi.org/10.1088/2632-2153/abcc44
https://doi.org/10.1021/acs.jctc.5b00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00099?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1557/mrc.2019.80
https://doi.org/10.1557/mrc.2019.80
https://doi.org/10.1557/mrc.2019.80
https://doi.org/10.1021/acssuschemeng.7b03652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.7b03652?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/2632-2153/ac8fe0
https://doi.org/10.1088/2632-2153/ac8fe0
https://doi.org/10.1103/PhysRevB.66.035416
https://doi.org/10.1103/PhysRevB.66.035416
https://doi.org/10.1016/j.susc.2015.03.023
https://doi.org/10.1016/j.susc.2015.03.023
https://doi.org/10.1016/j.susc.2015.03.023
https://doi.org/10.1021/acs.accounts.0c00689?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.0c00689?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.accounts.0c00689?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0052857
https://doi.org/10.1063/5.0052857
https://doi.org/10.1140/epjb/s10051-021-00156-1
https://doi.org/10.1140/epjb/s10051-021-00156-1
https://doi.org/10.1021/acs.jpca.9b04195?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.9b04195?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.2c05426?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


and transfer learning approach. J. Phys. Chem. A 2019, 123, 5826−
5835.
(90) Duan, C.; Chu, D. B.; Nandy, A.; Kulik, H. J. Two Wrongs Can
Make a Right: A Transfer Learning Approach for Chemical Discovery
with Chemical Accuracy. arXiv (Chemical Physics, Jan. 11, 2022, ver.
1..
(91) Biz, C.; Fianchini, M.; Polo, V.; Gracia, J. Magnetism and
Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange
Interactions in Pt3M (M= V, Cr, Mn, Fe, Co, Ni, and Y)(111) Alloys.
ACS Appl. Mater. Interfaces 2020, 12, 50484−50494.
(92) Biz, C.; Fianchini, M.; Gracia, J. Strongly Correlated Electrons
in Catalysis: Focus on Quantum Exchange. ACS Catal. 2021, 11,
14249−14261.
(93) Ren, X.; Wu, T.; Sun, Y.; Li, Y.; Xian, G.; Liu, X.; Shen, C.;
Gracia, J.; Gao, H.-J.; Yang, H.; Xu, Z. J. others Spin-polarized oxygen
evolution reaction under magnetic field. Nat. Commun. 2021, 12, 1−
12.
(94) Zunger, A. Practical doping principles. Appl. Phys. Lett. 2003,
83, 57−59.
(95) Pashley, M. Electron counting model and its application to
island structures on molecular-beam epitaxy grown GaAs (001) and
ZnSe (001). Phys. Rev. B 1989, 40, 10481.
(96) Voznyy, O.; Thon, S.; Ip, A.; Sargent, E. Dynamic trap
formation and elimination in colloidal quantum dots. J. Phys. Chem.
Lett. 2013, 4, 987−992.
(97) Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland,
S.; Sargent, E. H. A charge-orbital balance picture of doping in
colloidal quantum dot solids. ACS Nano 2012, 6, 8448−8455.
(98) Heras Domingo, J. Modeling of RuO2 surfaces and
nanoparticles. Their potential use as catalysts for the oxygen evolution
reaction. Ph.D. Thesis, Universitat Autonoma de Barcelona, 2019.
(99) Dickens, C. F.; Nørskov, J. K. A Theoretical Investigation into
the Role of Surface Defects for Oxygen Evolution on RuO2. J. Phys.
Chem. C 2017, 121, 18516−18524.
(100) Zagalskaya, A.; Alexandrov, V. Role of Defects in the Interplay
between Adsorbate Evolving and Lattice Oxygen Mechanisms of the
Oxygen Evolution Reaction in RuO2 and IrO2. ACS Catal. 2020, 10,
3650−3657.
(101) Draxl, C.; Scheffler, M. NOMAD: The FAIR Concept for Big-
Data-Driven Materials Science. arXiv (Materials Science), May 14,
2018, ver. 1. DOI: 10.48550/arXiv.1805.05039.
(102) Liang, S.; Pierce, R. D., Jr; Lin, H.; Chiang, S.-Y.; Huang, Q. J.
Electrochemical oxidation of PFOA and PFOS in concentrated waste
streams. Remediation Journal 2018, 28, 127−134.
(103) Védrine, J. C. Metal oxides in heterogeneous oxidation
catalysis: State of the art and challenges for a more sustainable world.
ChemSusChem 2019, 12, 577−588.
(104) Mars, P.; van Krevelen, D. W. Oxidations carried out by
means of vanadium oxide catalysts. Chem. Eng. Sci. 1954, 3, 41−59.
(105) Hinuma, Y.; Toyao, T.; Kamachi, T.; Maeno, Z.; Takakusagi,
S.; Furukawa, S.; Takigawa, I.; Shimizu, K. I. Density Functional
Theory Calculations of Oxygen Vacancy Formation and Subsequent
Molecular Adsorption on Oxide Surfaces. J. Phys. Chem. C 2018, 122,
29435−29444.
(106) Gracia, J. M.; Prinsloo, F. F.; Niemantsverdriet, J. Mars-van
Krevelen-like mechanism of CO hydrogenation on an iron carbide
surface. Catal. Lett. 2009, 133, 257−261.
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