Discovery of Catalysts for the Application of NO₃RR for Water Purification Using Machine Learning Techniques

Richard Tran, Duo Wang, Ryan Kingsbury, Jain Anubhav, Zachary Ulissi

Water purification

Water purification

Process	Capital (\$/1000 gal)	Operating (\$/1000 gal)	Brine Disposal (\$/1000 gal)	Total Cost (\$/1000 gal)
Rev Osmosis	\$0.44-0.88	\$1.10-3.00	\$0.40-2.60	\$1.54-6.48
Ion Exchange	\$0.24-1.18	\$0.46-0.64	\$0.04-0.32	\$0.70-1.24
Bio Treatment	\$0.40-0.90	\$0.50-0.80	\$0.01-0.02	\$0.91-1.72
Electrocatalytic Treatment	\$?	\$0.12-1.57	n/a	\$?

Water purification

Screening with simple parameters

Liu, J. X., Richards, D., Singh, N., & Goldsmith, B. R. (2019). ACS Catalysis, 9(8), 7052-7064.

 $NO_3^* + * \leftrightarrow NO_2^* + O^*$ $E_a = 0.234E_O + 0.054E_N + 2.047$ $E_b = -0.593E_0 - 0.064E_N - 1.324$

 E_a and E_b can be used with microkintetic modelling to determine TOF and selectivity

-3.0

 E^{N}_{ads} (eV)

5

Candidate screening via machine learning

Graph neural network (GNN) model:

Specs:

- GNN model: DimeNet++
- MAE = ~0.3 eV
- Target: Initial structure (adsorbed slab) $\rightarrow E_{ads}$
- Training data: ~100k (metals only)

Validation and offset

ML assisted screening

Fe Cd Cr Ti Y W^{Zr} Nb Hg V Hf Sc Lu Au Tc Rh Mn^d Zn^C Cu Ni Y W^{Zr} Mo^b Co^d Ta Ag^d Re^C Os <u>Pt^{Au} Pd ^{Tc} Ir</u>^{Rh} **Majority element**

Cu-M and Ni-M

NO₃-RR intermediate adsorption

DFT validation

(0.0 V vs. RHE)

Calculated materials

ZnNi	AFLOW/MP
Zn ₃ Co	AFLOW/MP
CdNi ₃	Template
CoPt ₂	AFLOW/MP
FePt ₅	AFLOW/MP
CoPd ₅	Template
Ir ₃ Rh	AFLOW/MP
IrRh	AFLOW/MP
ZnIr ₃	Template
CoNi ₂	AFLOW/MP

18

DFT validation

(0.1 V vs. RHE)

Calculated materials

ZnNi	AFLOW/MP
FeNi ₈	AFLOW/MP
Ni ₃ Ag	Template
CoPt ₂	AFLOW/MP
FePt ₅	AFLOW/MP
CdNi ₃	Template
CuPt ₃	AFLOW/MP
CoPd ₅	AFLOW/MP
NiPt ₂	AFLOW/MP

DFT validation

(0.2 V vs. RHE)

Calculated materials

Fe ₃ Ag	Template
Ni ₃ Ag	Template
AgPt	AFLOW/MP
Pd ₃ Pt	AFLOW/MP

Conclusion

- Screened the MP/AFLOW DBs for aqueously stable binary intermetallics.
- ML with OC20 provides a quick estimate of their adsorption energies which would otherwise be unfeasable with DFT
- Using microkinetic/scaling models from the literature, we found 35 economical bimetallics that can facilitate NO₃RR DFT verifying their E_{ads}

Our results corroborate
with previously known
observations. Cu- and
Ni- base intermetallics
yield synergistic effects
that makes them great
for NO₃RR

Acknowledgements

Funding

In collaboration with:

- Anubhav Jain (HT calculations)
- Jeffrey Preece (Techno-economic modeling)
- Wei Tong (Rapid materials synthesis and characterization)
- Bruce Moyer (Guidance in overall project)

Computing resources

Transforming ENERGY

Open Catalyst Project

Questions