# Carnegie Mellon University

Data-Driven Assisted Quantum Chemistry of Catalytic Materials

MAY 11 2022

**Richard Tran** rtran@andrew.cmu.edu



#### 2022 MRS SPRING **MEETING & EXHIBIT**

May 8-13, 2022 | Honolulu, Hawai'i May 23-25, 2022 | Virtual

LOCAL NEWS >

**©CBS NEWS** 

PITTSBURGH

# Earth 365: Is climate change causing more severe weather in Pittsburgh?

**BY KRISTIN EMERY** APRIL 18, 2022 / 5:41 PM / CBS PITTSBURGH

f 🎔 🖪

Mellon University



PENNSYLVANIA



# Hydrogen fuel cell





Data driven surface science in recent years

Zhuang, H., Tkalych, A. J., & Carter, E. A. (2016). Surface Energy as a Descriptor of Catalytic Activity. Journal of Physical Chemistry C, 120(41), 23698-23706. https://doi.org/10.1021/acs.jpcc.6b09687

## Surface energy



Tran, R., Li, X.-G., Montoya, J., Winston, D., Persson, K. A., & Ong, S. P. (2019). Anisotropic work function of elemental crystals Surface Science, 687(September), 48-55. Tran, R., Xu, Z., Radhakrishnan, B., Winston, D., Sun, W., Persson, K. A., & Ong, S. P. (2016). Data Descripter: Surface energies of elemental crystals. Scientific Data, 3(160080), 1-13.

# High throughput efforts and databases



Tran, R., Li, X.-G., Montoya, J., Winston, D., Persson, K. A., & Ong, S. P. (2019). Anisotropic work function of elemental crystals. Surface Science 687(Sentember) 48-55



Palizhati, A., Zhong, W., Tran, K., Back, S., & Ulissi, Z. W. (2019). Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks. Journal of Chemical Information and Modeling, 59(11), 4742–4749.

# Machine learning



Cleavage energy of 3,000 intermetallic surfaces

Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C. L., & Ulissi, Z. (2021). Open Catalyst 2020 (OC20) Dataset and Community Challenges. *ACS Catalysis*, *11*(10), 6059–6072.

# **Open Catalyst Project**



Scope of data **GNN-based models** for adsorption energy and adsorption induced relaxation 82 adsorbates 55 elements 11,451 materials (unary/binary/ternary) Miller index up to 2 872,000 ionic steps

Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C. L., & Ulissi, Z. (2021). Open Catalyst 2020 (OC20) Dataset and Community Challenges. *ACS Catalysis*, *11*(10), 6059–6072.

## Models and metrics

|                                            |            | S2EH    | F test  |         |     |                                                    |                                                               | IS2RE es                                                             | IS2RE est                                                                   | IS2RE est                                                                        |
|--------------------------------------------|------------|---------|---------|---------|-----|----------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                            |            | OOD     | OOD     | OOD     |     |                                                    |                                                               | Energy                                                               | Energy MAE [eV] ↓                                                           | Energy MAE [eV] ↓                                                                |
| Model                                      | ID         | Ads     | Cat     | Both    | N   | Nodel                                              | Approach                                                      | Andel Approach ID                                                    | Andel Approach ID OOD Ads                                                   | Andel Approach ID OOD Ads OOD Cat                                                |
| 1. 1 1.                                    | Energy MAE | [eV]↓   | 1.001.( |         | Med | lian baseline                                      | lian baseline                                                 | lian baseline 1.7489                                                 | lian baseline 1.7489 1.8911                                                 | lian baseline 1.7489 1.8911 1.7107                                               |
| median baseline                            | 2.0430     | 2.4203  | 1.9916  | 2.5770  | С   | GCNN ( <u>1)</u>                                   | GCNN ( <u>1)</u> Direct                                       | GCNN ( <u>1)</u> Direct 0.6135                                       | GCNN (1) Direct 0.6135 0.9155                                               | GCNN (1) Direct 0.6135 0.9155 0.6211                                             |
| SchNet <sup>87</sup>                       | 0.3272     | 0.4907  | 0.5288  | 0.7161  |     | SchNet ( <u>2)</u>                                 | SchNet (2) Direct                                             | SchNet (2) Direct 0.6372                                             | SchNet (2) Direct 0.6372 0.7342                                             | SchNet (2) Direct 0.6372 0.7342 0.6611                                           |
| SchNet <sup>87</sup> —force-only           | 34.0316    | 33.769  | 35.2982 | 38.4652 |     | DimeNet++ ( <u>3,4)</u>                            | DimeNet++ (3,4) Direct                                        | DimeNet++ ( <u>3,4)</u> Direct 0.5605                                | DimeNet++ ( <u>3,4)</u> Direct 0.5605 0.7252                                | DimeNet++ (3,4) Direct 0.5605 0.7252 0.5750                                      |
| SchNet <sup>87</sup> —energy-only          | 0.3948     | 0.4460  | 0.5510  | 0.7031  |     | SchNet ( <u>2)</u>                                 | SchNet (2) Relaxation                                         | SchNet (2) Relaxation 0.7088                                         | SchNet (2) Relaxation 0.7088 0.7741                                         | SchNet (2) Relaxation 0.7088 0.7741 0.7665                                       |
| DimeNet++ <sup>88,89</sup>                 | 0.4858     | 0.4702  | 0.5331  | 0.6482  |     | SchNet $(2)$ force-only + energy-only              | SchNet (2) force-only + energy-only Relaxation                | SchNet (2) force-only + energy-only Relaxation 0.7066                | SchNet (2) force-only + energy-only Relaxation 0.7066 0.7420                | SchNet (2) force-only + energy-only Relaxation 0.7066 0.7420 0.7966              |
| DimeNet++ <sup>88,89</sup> —force-<br>only | 28.2134    | 28.9428 | 28.9069 | 34.9049 |     | DimeNet++ ( <u>3,4)</u>                            | DimeNet++ ( <u>3,4</u> ) Relaxation                           | DimeNet++ ( <u>3,4</u> ) Relaxation 0.6687                           | DimeNet++ ( <u>3,4</u> ) Relaxation 0.6687 0.6864                           | DimeNet++ (3,4) Relaxation 0.6687 0.6864 0.6858                                  |
| DimeNet++ <sup>88,89</sup> —energy         | 0.3586     | 0.4022  | 0.5060  | 0.6540  |     | DimeNet++ $(3,4)$ force-only + energy-only         | DimeNet++ $(3,4)$ force-only + energy-only Relaxation         | DimeNet++ $(3,4)$ force-only + energy-only Relaxation 0.5112         | DimeNet++ (3,4) force-only + energy-only Relaxation 0.5112 0.5744           | DimeNet++ $(3,4)$ force-only + energy-only Relaxation 0.5112 0.5744 0.5922       |
| DimeNet++ <sup>88,89</sup> -large—         | 29.3382    | 30.0365 | 30.0461 | 36.7537 |     | Dimenet++ $(3,4)$ – large force-only + energy-only | Dimenet++ $(3,4)$ – large force-only + energy-only Relaxation | Dimenet++ $(3,4)$ – large force-only + energy-only Relaxation 0.5022 | Dimenet++ $(3,4)$ – large force-only + energy-only Relaxation 0.5022 0.5430 | Dimenet++ (3,4) – large force-only + energy-only Relaxation 0.5022 0.5430 0.5780 |

IS2RE: Initial structure to relaxed adsorption energy S2EF: Structure to adsorption energy and force

# Materials discovery: Nitrate reduction reaction

Wang, Z., Young, S. D., Goldsmith, B. R., & Singh, N. (2021). Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. *Journal of Catalysis*, *395*(3), 143–154.

## Water purification



Liu, J. X., Richards, D., Singh, N., & Goldsmith, B. R. (2019). Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS Catalysis, 9(8), 7052–7064.

### Application to catalyst discovery



## DFT and ML verification



# ML assisted screening



# ML assisted screening



# ML assisted screening



# ML assisted screening



## ML assisted screening



# ML assisted screening



## Final candidates

| Formula            | Space group | Cost            | $\Delta G_{aq}(0.0 \text{ V})$ | $\Delta G_{aq}(0.1 \text{ V})$ | Active   | N <sub>2</sub> | NH <sub>3</sub> |
|--------------------|-------------|-----------------|--------------------------------|--------------------------------|----------|----------------|-----------------|
|                    |             | $(kg mol^{-1})$ | (eV/atom)                      | (eV/atom)                      | at 0.1 V | _              |                 |
| Zn                 | $P6_3/mmc$  | 2.95            | 0.00                           | 0.00                           | No       | $\checkmark$   | $\checkmark$    |
| ZnCu <sub>8</sub>  | I4/mmm      | 8.78            | 0.18                           | 0.29                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>5</sub> Ni | Cm          | 10.93           | 0.15                           | 0.27                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>5</sub> Ni | Amm2        | 10.93           | 0.15                           | 0.27                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>4</sub> Ni | I4/m        | 11.22           | 0.17                           | 0.29                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ni | R3m         | 11.65           | 0.20                           | 0.33                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ni | I4/mmm      | 11.65           | 0.21                           | 0.33                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ni | Cmmm        | 11.65           | 0.21                           | 0.33                           | Yes      | $\checkmark$   | $\checkmark$    |
| CoCu <sub>7</sub>  | Fm3m        | 14.52           | 0.19                           | 0.30                           | No       | $\checkmark$   | $\checkmark$    |
| Ni                 | Fm3m        | 18.54           | 0.00                           | 0.00                           | Yes      | $\checkmark$   | $\overline{}$   |
| Со                 | $P6_3/mmc$  | 52.21           | 0.00                           | 0.00                           | No       | $\checkmark$   |                 |
| Cu <sub>4</sub> Ag | I4/m        | 261.58          | 0.08                           | 0.16                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ag | P4/mmm      | 315.24          | 0.08                           | 0.15                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ag | Pmmm        | 315.24          | 0.09                           | 0.16                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ag | Pmmn        | 315.24          | 0.10                           | 0.18                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ag | C2/m        | 315.24          | 0.10                           | 0.18                           | Yes      | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ag | I4/mmm      | 315.24          | 0.10                           | 0.17                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>3</sub> Ag | Pmmn        | 315.24          | 0.10                           | 0.17                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>2</sub> Ag | $P6_3/mmc$  | 397.92          | 0.07                           | 0.14                           | No       | $\checkmark$   | $\checkmark$    |
| $\tilde{Cu_2Ag}$   | C2/m        | 397.92          | 0.09                           | 0.15                           | No       | $\checkmark$   |                 |
| Cu <sub>2</sub> Ag | $P6_3/mmc$  | 397.92          | 0.07                           | 0.14                           | No       | $\checkmark$   | $\checkmark$    |
| Cu <sub>2</sub> Ag | C2/m        | 397.92          | 0.10                           | 0.17                           | No       | $\checkmark$   | $\checkmark$    |
| $Cu_5Ag_4$         | I4/mmm      | 496.75          | 0.10                           | 0.15                           | No       | $\checkmark$   | $\checkmark$    |



Wang, Y., Xu, A., Wang, Z., Huang, L., Li, J., Li, F., Wicks, J., Luo, M., Nam, D. H., Tan, C. S., Ding, Y., Wu, J., Lum, Y., Dinh, C. T., Sinton, D., Zheng, G., & Sargent, E. H. (2020). Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. *Journal of the American Chemical Society*, *142*(12), 5702–5708. https://doi.org/10.1021/jacs.9b13347

# Recap

- Screened the MP/AFLOW DBs for aqueously stable binary intermetallics.
- ML with OC20 provides a quick estimate of their adsorption energies which would otherwise be unfeasable with DFT
- Using microkinetic/scaling models from the literature, we found 23 economical bimetallics that can facilitate NO<sub>3</sub>RR DFT verifying their  $E_{ads}$



# Outlook and Future works

# Hydrogen fuel source





🔿 Meta Al

 González, D., Heras-Domingo, J., Sodupe, M., Rodríguez-Santiago, L., & Solans-Monfort, X. (2021). Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. *Journal of Catalysis*, 396, 192–201.

# Accelerating renewable energy with new data set for green hydrogen fuel

April 18, 2022



#### a) Water Nucleophilic Attack (WNA)



#### b) Oxo-Coupling Mechanism (I2M)



#### c) Lattice Oxygen Evolution Reaction (LOER)



# Acknowledgements

# Funding



# Meta Al



Designing Materials to Revolutionize and Engineer our Future (DMREF)

## **Computing resources**











#### Zachary Ulissi

#### Open Catalyst 2022 (OER)

#### Adeesh Kolluru



#### Nitrate reduction reaction



Duo Wang Jain Anubhav Ryan Kingsbury



Aini Palizhati Kristin A. Persson 34

Isopropyl alcohol dehydrogenation



Hilda Mera

# 

# **PITTSBURGH QUANTUM INSTITUTE** www.pqi.org

# References

- 1. Zhuang, H., Tkalych, A. J., & Carter, E. A. (2016). Surface Energy as a Descriptor of Catalytic Activity. *Journal of Physical Chemistry C*, *120*(41), 23698–23706. https://doi.org/10.1021/acs.jpcc.6b09687
- 2. Tran, R., Xu, Z., Radhakrishnan, B., Winston, D., Sun, W., Persson, K. A., & Ong, S. P. (2016). Data Descripter: Surface energies of elemental crystals. Scientific Data, 3(160080), 1–13.
- 3. Tran, R., Li, X.-G., Montoya, J., Winston, D., Persson, K. A., & Ong, S. P. (2019). Anisotropic work function of elemental crystals. *Surface Science*, *687*(September), 48–55. Palizhati, A., Zhong, W., Tran, K., Back, S., & Ulissi, Z. W. (2019).
- 4. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks. *Journal of Chemical Information and Modeling*, 59(11), 4742–4749.
- 5. Chanussot, L., Das, A., Goyal, S., Lavril, T., Shuaibi, M., Riviere, M., Tran, K., Heras-Domingo, J., Ho, C., Hu, W., Palizhati, A., Sriram, A., Wood, B., Yoon, J., Parikh, D., Zitnick, C. L., & Ulissi, Z. (2021). Open Catalyst 2020 (OC20) Dataset and Community Challenges. *ACS Catalysis*, *11*(10), 6059–6072. https://doi.org/10.1021/acscatal.0c04525
- 6. Liu, J. X., Richards, D., Singh, N., & Goldsmith, B. R. (2019). Activity and Selectivity Trends in Electrocatalytic Nitrate Reduction on Transition Metals. ACS *Catalysis*, *9*(8), 7052–7064.
- 7. Wang, Z., Young, S. D., Goldsmith, B. R., & Singh, N. (2021). Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying. *Journal of Catalysis*, *395*(3), 143–154.
- 8. Wang, Y., Xu, A., Wang, Z., Huang, L., Li, J., Li, F., Wicks, J., Luo, M., Nam, D. H., Tan, C. S., Ding, Y., Wu, J., Lum, Y., Dinh, C. T., Sinton, D., Zheng, G., & Sargent, E. H. (2020). Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. *Journal of the American Chemical Society*, *142*(12), 5702–5708.
- 9. González, D., Heras-Domingo, J., Sodupe, M., Rodríguez-Santiago, L., & Solans-Monfort, X. (2021). Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. *Journal of Catalysis*, *396*, 192–201. https://doi.org/10.1016/j.jcat.2021.02.026

# Questions